飘过的春风

小白的进阶

机器学习面试要点总结

1、说到xgboost,不得不说gbdt。gbdt详细说明见下面这篇文章。   https://www.cnblogs.com/ModifyRong/p/7744987.html   2、逻辑回归面试经常问的问题   http://www.cnblogs.com/ModifyRong/p/...

2018-03-19 21:18:25

阅读数 546

评论数 1

算法学习汇总

一、十大排序算法总结:    https://www.cnblogs.com/onepixel/articles/7674659.html二、数据结构-栈和队列:   http://blog.csdn.net/u011630575/article/details/55271510三、动态规划:  ...

2018-03-06 17:07:31

阅读数 178

评论数 0

线性代数笔记

线性代数笔记1——矩阵的基本运算 https://blog.csdn.net/sunbobosun56801/article/details/78292651  

2018-12-28 22:01:28

阅读数 45

评论数 0

极大似然估计和贝叶斯决策详解

原博客链接1 :https://blog.csdn.net/zengxiantao1994/article/details/72787849 原博客链接2: https://blog.csdn.net/linyanqing21/article/details/50939009 主要内容:总结起...

2018-12-26 20:49:13

阅读数 86

评论数 0

Jupyter Notebook使用教程(如何在code和markdown切换,快捷键设置)

1、启动 在终端中输入以下命令: jupyter notebook --allow-root 执行命令之后,在终端中将会显示一系列notebook的服务器信息,同时浏览器将会自动启动Jupyter Notebook。 启动过程中终端显示内容如下: $ jupyter noteboo...

2018-12-07 11:32:36

阅读数 858

评论数 0

markdown(md)文件的基本常用编辑语法

.md即markdown文件的基本常用编写语法(图文并茂) 原文:https://www.cnblogs.com/liugang-vip/p/6337580.html 起因: 因为现在的前端基本上都用上了前端构建工具,那就难免要写一些readme等等的说明性文件,但是这样的文件一般都是.md...

2018-12-06 22:48:12

阅读数 225

评论数 0

我上了985,211,才发现自己一无所有 | 或者,也不能这么说

转载:旦事记  《我上了985,211,才发现自己一无所有 | 或者,也不能这么说》一文   我是在很久以后才意识到原来那些看起来光鲜亮丽的人心里也是在自卑的。    这个发现很偶然,是有一次我的学霸舍友回来,非常非常不开心,趴在桌子上很久很久没有起来。   我打着炉石呢,觉得不对劲回...

2018-11-02 08:40:46

阅读数 712

评论数 2

机器学习中的范数规则化之 L0、L1与L2范数

原文:https://blog.csdn.net/zouxy09/article/details/2497199          今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅...

2018-10-24 16:12:13

阅读数 107

评论数 0

词嵌入向量(Word Embedding)的建模

1、Embedding函数 从前面的定义,我们期望在隐层中找到一个/组嵌入函数W(这里采用lookup table的方式),使得![][3]具体的,假设指定固定的向量维度,W("篮球")=(0.2, -0.4, 0.7, ...),W("苹果...

2018-09-29 21:48:03

阅读数 340

评论数 0

词嵌入向量(Word Embedding)的原理和生成方法

Word Embedding 词嵌入向量(WordEmbedding)是NLP里面一个重要的概念,我们可以利用Word Embedding将一个单词转换成固定长度的向量表示,从而便于进行数学处理。本文将介绍Word Embedding的使用方式,并讲解如何通过神经网络生成Word Embeddi...

2018-09-29 11:08:12

阅读数 736

评论数 0

Bow词袋模型原理与实例(bag of words)

The bag-of-words model is a simplifying assumption used in natural language processing and information retrieval. In this model, a text (such as a se...

2018-09-29 10:50:59

阅读数 388

评论数 0

程序化广告交易中的点击率预估

指标   广告点击率预估是程序化广告交易框架的非常重要的组件,点击率预估主要有两个层次的指标:      1. 排序指标。排序指标是最基本的指标,它决定了我们有没有能力把最合适的广告找出来去呈现给最合适的用户。这个是变现的基础,从技术上,我们用AUC来度量。      2. 数值指标。数值指...

2018-09-18 12:24:04

阅读数 131

评论数 0

GBDT+LR特征融合的例子

sklearn直接使用.apply即可完成,下面看下简单的例子,GBDT+LR融合后比直接使用GBDT预测,AUC提升了0.004 import pandas as pd from sklearn.linear_model import LogisticRegression from sk...

2018-09-18 12:21:22

阅读数 198

评论数 0

CTR预估中GBDT与LR融合方案

原文:https://blog.csdn.net/lilyth_lilyth/article/details/48032119 1、 背景       CTR预估(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入。CTR预...

2018-09-18 11:14:01

阅读数 119

评论数 0

pandas的iloc、loc、ix的使用(列切片及行切片)

loc:通过选取行(列)标签索引数据  iloc:通过选取行(列)位置编号索引数据  ix:既可以通过行(列)标签索引数据,也可以通过行(列)位置编号索引数据 df是一个dataframe,列名为A B C D 具体值如下: A B C D 0 ss 小红 ...

2018-09-15 22:07:30

阅读数 520

评论数 0

解决jupyter中matplotlib中文乱码问题

第一步:系统中文字体查看 [hadoop@p168 ~]$ fc-list :lang=zh /System/Library/Fonts/STHeiti Medium.ttc: 黑体\-简,黑體\-簡,Heiti SC,黒体\-簡,Heiti\-간체:style=中等,中黑,Medium,Ha...

2018-09-14 23:13:37

阅读数 193

评论数 0

Kaggle案例之泰坦尼克船员幸存预测

无意间在网易云课堂上找了一个Kaggle案例,泰坦尼克获救船员预测,在此之前我是从没接触过kaggle,毕竟是刚入门的小白,看着视频,算是真正实战了一次,主要是在这个过程中学到了很多东西。  下面视频地址 http://study.163.com/course/courseLearn.htm?co...

2018-09-14 10:54:03

阅读数 166

评论数 0

使用sklearn优雅地进行数据挖掘

目录 1 使用sklearn进行数据挖掘   1.1 数据挖掘的步骤   1.2 数据初貌   1.3 关键技术 2 并行处理   2.1 整体并行处理   2.2 部分并行处理 3 流水线处理 4 自动化调参 5 持久化 6 回顾 7 总结 8 参考资料 1 使用sklearn进行数据挖掘 ...

2018-09-06 09:49:23

阅读数 129

评论数 0

用sklearn做特征工程

目录 1 特征工程是什么? 2 数据预处理   2.1 无量纲化     2.1.1 标准化     2.1.2 区间缩放法     2.1.3 标准化与归一化的区别   2.2 对定量特征二值化   2.3 对定性特征哑编码   2.4 缺失值计算   2.5 数据变换   2.6 回顾 3 ...

2018-09-05 20:47:00

阅读数 108

评论数 0

数学基础

线性代数  https://www.matongxue.com/courses/1/ 微积分  https://www.matongxue.com/courses/2/   马同学高等数学 如何理解主元分析(PCA)? https://www.matongxue.com/madocs/102...

2018-09-03 19:15:28

阅读数 75

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭