catia二维图坐标如何表示_你知道矩阵中二维,三维,四维,五维是如何表示的吗?...

本文探讨了如何使用数字表示二维到五维空间中的点,并介绍了向量的概念,包括其长度、方向及加法运算。通过向量乘法和旋转,展示了向量操作的不同方面,强调了向量在多维度空间中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现在假设我们有两个数字,我们可以表示二维空间中的任何点

9d8951e3c66efc34076194c6e1882003.png

现在假设我们有三个数字,我么 现在可以表示三维空间中的任何点

1e59b3c85310a73cfed8acc645ce454f.png

同样,如果我们有一组四个数字,我们可以代表四维空间中的任何一点

8d0d2c197d831759039f6d9bc3ff1cfb.png

如果我们有一组五个数字,我们可以在五维空间中表示一个点

651d1272297d5a2a491844f5728a4bcf.png

如果我们有无限的数字,我们可以用无限多个维度来表示空间中的一个点

bb0fb4b2d328b4aeda3382be86fe5766.png

无论我们有多少尺寸,每组数字代表空间中的一个点,可以被认为是一个箭头,我们称之为矢量,每个向量具有长度和方向

3033366a4e8cb4ef3cb78c26a8cb034c.png

如果我们将向量乘以数字,向量的长度将会改变,但它的方向将保持不变

509f34094a3046d544ea25c772acec60.png
4bcbc7f86faa1d6746efeb4a2bba8bd6.png

如果我们将两个向量相加,结果如图所示

31d29ffc0195c8e5a0546df5754563d3.png
fe979fb146af0848877fcce148aa5ded.png

每个向量都可以被认为是,每个不同维度中指向的向量之和

f9ce9d622c62408bd714c6bcfab7fede.png

并且每个维度中指向的每个向量都可以被认为是向量长度为乘以数字

7888e741796d0fa298b1c3c821a24701.png
511dbceb2f8077d5f6e740ce4859f65a.png

有许多转化可以应用于矢量,例如矢量可以围绕该轴在空间中旋转一定程度的度数

ae6446796f5e01016df5c8724c019fdc.png

假设我们将此旋转应用于一组向量,然后我们将所有向量加在一起

c738d552709e96d37e8f13d840ee68b1.png
49244ee0d565920b6b9a8669040fefe3.png

现在假设不是通过旋转矢量开始,我们首先将所有向量加在一起,然后我们旋转结果

591977cfa1b3b30078d1a5a77e0b77b5.png

事实证明,生成的最终向量与之前相同

b80d153f86130b54add00d14a0be7349.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值