[詹兴致矩阵论习题参考解答]习题1.7

7. 设 $A_j\in M_n$, $j=1,\cdots,m$, $m>n$, 且 $\dps{\sum_{j=1}^m A_j}$ 非奇异 (即可逆). 证明: 存在 $S\subset \sed{1,2,\cdots,m}$ 满足 $|S|\leq n$ 且 $\dps{\sum_{j\in S}A_j}$ 非奇异.

 

 

证明: 对 $m$ 作数学归纳法. 当 $m=n+1$ 时, 由 [Amer. Math. Monthly 109 (2002), 665--666] 及 [R.S. Costas-Santos, On the elementary symmetric functions of a sum of matrices, arXiv: 0612464] 知 $$\bex \sum_{k=1}^{n+1}(-1)^k \sum_{1\leq i_1<\cdots<i_k\leq n+1}\det(A_{i_1}+\cdots+A_{i_k})=0. \eex$$而结论成立. 一般的, 假设结论对 $\leq m-1\ (m\geq n+2)$ 个矩阵相加成立, 则当是 $m$ 个矩阵相加时, $$\bex A_1+\cdots+A_m=(A_1+\cdots+A_{m-2})+(A_{m-1}+A_m), \eex$$ 而由 $m-1$ 个矩阵相加的情形, $A_{i_1}+\cdots+A_{i_k}\ (k\leq n)$ 可逆. 若 $i_k\leq m-2$, 则已证; 若 $i_k=A_{m-1}+A_m$, 则 $$\bex A_{i_1}+\cdots+A_{i_k} =A_{i_1}+\cdots+A_{i_{k-1}}+A_{m-1}+A_m \eex$$ 可逆, 此时, 若 $k+1\leq n$, 则也已证, 若 $k+1=n+1$, 则由 $n+1$ 个矩阵相加的情形, 也有结论成立.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值