三角函数专题【高阶辅导】

Ⅰ、三角函数和解三角形知识结构图

2%E4%B8%89%E8%A7%92%E5%87%BD%E6%95%B0%E5%92%8C%E5%B9%B3%E9%9D%A2%E5%90%91%E9%87%8F.bmp

Ⅱ、主要的知识点和相关题型

1、角的集合表示:角的终边在直线上,角的终边在射线上,在扇形内,在对顶扇形内,象限角,象限界角,区间角等。

2、弧长与扇形面积公式及其应用,

方法:均值不等式(两种形式);二次函数(变量集中)

3、已知角\(\alpha\)的象限,判断\(\cfrac{\alpha}{n}\)的象限 方法:计算法, 八卦图法

4、考察三角函数的定义,单位圆定义是特例。更一般的定义是利用坐标之比定义。和圆的参数方程形式有关联。

5、三角函数值符号的判断

6、解三角不等式 法1:三角函数线的应用。 法2、三角函数图像

7、同角三角函数基本关系的应用 齐次式, \(\sin\alpha+\cos\alpha\)\(\sin\alpha-\cos\alpha\)\(\sin\alpha\cdot \cos\alpha\),知一求二

8、【三角函数图像和性质,\(y=\sin x\)\(y=\cos x\)等模板函数】三角函数的定义域\(\Longrightarrow\)解三角不等式,

三角函数的值域 直接法,化一法,换元法

9、求三角函数的单调区间 代换法 图像法

10、求三角函数的奇偶、周期、对称性, 整体法+模板法

11、作函数\(y=A\sin(\omega x+\phi)+k\)的图像 五点法 快速作图法

12、函数\(y=A\sin(\omega x+\phi)+k\)的图像变换 实质:替换

13、由图像或文字确定函数\(y=A\sin(\omega x+\phi)+k\)的四个参数,待定系数法 +具体确定公式

14、函数\(y=A\sin(\omega x+\phi)+k\)的图像和性质 以\(y=\sin x\)为模板,各种性质

15、函数\(y=A\sin(\omega x+\phi)+k\)的模型应用 三角函数应用题目

16、三角函数式的化简

方法:异名化同名,异角化同角,异次化同次,弦切互化,1的代换,通分,约分,特殊值特殊角互化

  • \(1+\sin\theta+\cos\theta=\sin\theta+(1+\cos\theta)=2\sin\cfrac{\theta}{2}\cos\cfrac{\theta}{2}+2\cos^2\cfrac{\theta}{2}=2\cos\cfrac{\theta}{2}(\sin\cfrac{\theta}{2}+\cos\cfrac{\theta}{2})\)

  • \(1+\sin\theta-\cos\theta=\sin\theta+(1-\cos\theta)=2\sin\cfrac{\theta}{2}\cos\cfrac{\theta}{2}+2\sin^2\cfrac{\theta}{2}=2\sin\cfrac{\theta}{2}(\sin\cfrac{\theta}{2}+\cos\cfrac{\theta}{2})\)

17、三角函数的求值

类型一:给角求值 \(\Longrightarrow\)化简

类型二:给值求值 方法:从观察已知角入手,给一个角求一个角,利用余、补、半、倍、特等建立关系;给两个角求一个角,利用和、差建立关系

类型三:给值求角\(\Longrightarrow\)转化为给值求值+角的范围(注意:所求角的三角函数的确定有原则,角的范围可能需要结合题目压缩)

18、简单的三角恒等变换

19、正弦定理和余弦定理的各种形式记忆、公式的内容及其证明,

20、应用正弦定理和余弦定理解三角形 理解掌握她们各自解决的两种类型。

21、判断三角形的形状。 (三角形内的诱导公式) 及其P61充要条件

方法:角化边,边化角。约分时要注意在三角形中\(sinA\ne 0\),但是\(cosA=0\)是可能的,要注意排除。 还有 \(sin2A=sin2B\)的结果的留意。

22、与三角形的面积有关的问题。

23、解三角形应用。理解各种概念 测量距离、高度、角度和平面几何中的应用

Ⅲ、章节的重点和难点

1、关于\(\sin\theta、\cos\theta\)的齐次式变量集中

①一次齐次式, 如\(a\sin\theta+b\cos\theta\),常借助分式形式考察\(\cfrac{a\sin\theta+b\cos\theta}{c\sin\theta+d\cos\theta}\) (\(a,b,c,d\)为常数)

②二次齐次式, 如\(a\sin2\theta+b\sin\theta\cos\theta+c\cos2\theta\)\(\sin2\theta\)\(\cos2\theta\)\(1+\sin2\theta\)\(2-\cos2\theta\)\(3\sin2\theta-2\cos2\theta\), 等等

思路:可以恢复分母\(1=\sin^2\theta+\cos^2\theta\),变成分子分母都是二次齐次式,

③四次齐次式,如已知\(tan\theta=3\),求值\(sin^4\theta-3sin\theta\cdot cos^3\theta+cos^4\theta\)

思路:恢复分母\(1=1^2=(\sin^2\theta+\cos^2\theta)^2\),变成分子分母都是四次齐次式,

分析:原式=\(\cfrac{sin^4\theta-3sin\theta\cdot cos^3\theta+cos^4\theta}{(\sin^2\theta+\cos^2\theta)^2}\)

\(=\cfrac{sin^4\theta-3sin\theta\cdot cos^3\theta+cos^4\theta}{\sin^4\theta+\cos^4\theta+2sin^2\theta\cdot cos^2\theta}\),给分子分母同时除以\(cos^4\theta\)得到,

\(=\cfrac{tan^4\theta-3tan\theta+1}{tan^4\theta+2tan^2\theta+1}\),然后代值计算。

④一次齐次式变为二次齐次式的思路:两边平方+恢复分母1,

2、三角函数的求值三角函数求值

类型一:给角求值 \(\Longrightarrow\)化简

类型二:给值求值 方法:从观察已知角入手,给一个角求一个角,利用余、补、半、倍、特等建立关系;给两个角求一个角,利用和、差建立关系

类型三:给值求角\(\Longrightarrow\)转化为给值求值+角的范围(注意:所求角的三角函数的确定有原则,角的范围可能需要结合题目压缩)

3、解三角形

4、三角函数和解三角形的交汇处的题型

这类题目往往会设置第一问求一个角(如\(A\)),第二问已知边\(a\)(注意对角和对边的关系),接下来可以考查的方向有

①再已知\(S_△\),求解\(b+c\)的取值范围; 或者已知\(b+c\)\(S_△\)的取值范围。

②求解\(msinB+nsinC\)的取值范围(\(m、n\)是实数)

③求解\(msinB\cdot nsinC\)的取值范围(\(m、n\)是实数)

④求解\(S_△=\cfrac{1}{2}bcsinA\)的取值范围

⑤求解周长的取值范围 \(l=a+b+c\)

⑥求解类似周长的取值范围 \(l=2a+3b-c\)

⑦难点:自变量的取值范围,已知三角形和锐角三角形时,自变量的范围是不一样的。

Ⅳ、本章节中的常用公式总结提炼

①数学常识三角函数内容

②三角函数知识点三角函数识记

典型例题

例1已知函数\(f(x)=2sinx\cdot cosx+2\sqrt{3}\cdot cos^2x-\sqrt{3}+1\)

①将函数转化为正弦型;②求周期;③求值域;④求单调区间;⑤求对称性;⑥求奇偶性;

变形方向:正弦型(或余弦型);变形公式:逆用二倍角的正弦、余弦公式和辅助角公式;

\(f(x)=sin2x+\sqrt{3}(1+cos2x)-\sqrt{3}+1\)

\(=sin2x+\sqrt{3}cos2x+1\)

\(=2sin(2x+\cfrac{\pi}{3})+1\)

①求周期;

\(T=\cfrac{2\pi}{2}\),得到\(T=\pi\)

②求值域\((x\in R 或 x\in [-\cfrac{\pi}{3},\cfrac{\pi}{4}])\);最值(和最值点);

\(x\in R\),则

\(sin(2x+\cfrac{\pi}{3})=1\)时,即\(2x+\cfrac{\pi}{3}=2k\pi+\cfrac{\pi}{2}(k\in Z)\),即\(x=k\pi+\cfrac{\pi}{12}(k\in Z)\)时,\(f(x)_{max}=2\times1+1=3\)

\(sin(2x+\cfrac{\pi}{3})=-1\)时,即\(2x+\cfrac{\pi}{3}=2k\pi-\cfrac{\pi}{2}(k\in Z)\),即\(x=k\pi-\cfrac{5\pi}{12}(k\in Z)\)时,\(f(x)_{max}=2\times(-1)+1=-1\)

992978-20171214150143326-1504669722.png

\(x\in [-\cfrac{\pi}{3},\cfrac{\pi}{4}]\),则可得

\(-\cfrac{2\pi}{3}\leq 2x\leq \cfrac{\pi}{2}\),则\(-\cfrac{\pi}{3}\leq 2x+\cfrac{\pi}{3}\leq \cfrac{5\pi}{6}\)

故当\(2x+\cfrac{\pi}{3}=-\cfrac{\pi}{3}\),即\(x=-\cfrac{\pi}{3}\)时,\(f(x)_{min}=f(-\cfrac{\pi}{3})=2\times (-\cfrac{\sqrt{3}}{2})+1=-\sqrt{3}+1\)

故当\(2x+\cfrac{\pi}{3}=\cfrac{\pi}{2}\),即\(x=\cfrac{\pi}{12}\)时,\(f(x)_{max}=f(\cfrac{\pi}{12})=2\times 1+1=3\)

③求单调区间\(\left(x\in R 或x\in [-\cfrac{\pi}{4},\cfrac{\pi}{2}]\right)\)(具体解法参见例2的法1和法2)

④求函数\(f(x)\)对称轴方程和对称中心坐标;

\(2x+\cfrac{\pi}{3}=k\pi+\cfrac{\pi}{2}(k\in Z)\),得到\(f(x)\)对称轴方程为\(x=\cfrac{k\pi}{2}+\cfrac{\pi}{12}(k\in Z)\)

\(2x+\cfrac{\pi}{3}=k\pi(k\in Z)\),得到\(f(x)\)的对称中心坐标为\((\cfrac{k\pi}{2}-\cfrac{\pi}{6},1)(k\in Z)\)

⑤求奇偶性\(\left(奇函数利用f(0)=0;偶函数利用f(0)=f(x)_{max}或f(x)_{min}\right)\)

比如,函数\(g(x)=2sin(2x+\phi+\cfrac{\pi}{3})(\phi\in (0,\pi))\)是偶函数,求\(\phi\)的值。

分析:由于函数\(g(x)\)是偶函数,则在\(x=0\)处必然取到最值,

故有\(2\times 0+\phi+\cfrac{\pi}{3}=k\pi+\cfrac{\pi}{2}(k\in Z)\)

\(\phi=k\pi+\cfrac{\pi}{6}(k\in Z)\)

\(k=0\),则\(\phi=\cfrac{\pi}{6}\in (0,\pi)\),满足题意,故所求\(\phi=\cfrac{\pi}{6}\)时,函数\(g(x)\)是偶函数。

例1(2016\(\cdot\)天津高考改编) 已知函数\(f(x)=4tanx\cdot sin(\cfrac{\pi}{2}-x)\cdot cos(x-\cfrac{\pi}{3})-\sqrt{3}\),试讨论\(f(x)\)在区间\([-\cfrac{\pi}{4},\cfrac{\pi}{4}]\)上的单调性。

解析:先将所给函数化简为正弦型或者余弦型,

\(f(x)=4tanx\cdot cosx(cosx\cdot \cfrac{1}{2}+sinx\cdot \cfrac{\sqrt{3}}{2})-\sqrt{3}\)

\(=4sinx(cosx\cdot \cfrac{1}{2}+sinx\cdot \cfrac{\sqrt{3}}{2})-\sqrt{3}=2sinxcosx+2\sqrt{3}sin^2x-\sqrt{3}\)

\(=sin2x+\sqrt{3}(1-cos2x)-\sqrt{3}=sin2x-\sqrt{3}cos2x\)

\(=2sin(2x-\cfrac{\pi}{3})\)

法1:先求解函数在\(x\in R\)上的单调区间,

\(2k\pi-\cfrac{\pi}{2}\leq 2x-\cfrac{\pi}{3}\leq 2k\pi+\cfrac{\pi}{2}(k\in Z)\)

得到单调递增区间为\([k\pi-\cfrac{\pi}{12},k\pi+\cfrac{5\pi}{12}](k\in Z)\)

又因为\(x\in [-\cfrac{\pi}{4},\cfrac{\pi}{4}]\)

然后给\(k\)赋值,令\(k=0\)

得到函数在区间\([-\cfrac{\pi}{12},\cfrac{\pi}{4}]\)上单调递增,在区间\([-\cfrac{\pi}{4},-\cfrac{\pi}{12}]\)上单调递减。

992978-20171214123346951-354986024.png

法2:由\(-\cfrac{\pi}{4}\leq x\leq \cfrac{\pi}{4}\),求得\(-\cfrac{5\pi}{6}\leq 2x-\cfrac{\pi}{3}\leq \cfrac{\pi}{6}\)

结合横轴为\(2x-\cfrac{\pi}{3}\)的图像可知,

\(-\cfrac{5\pi}{6}\leq 2x-\cfrac{\pi}{3}\leq -\cfrac{\pi}{2}\)时,求得函数在区间\([-\cfrac{\pi}{4},-\cfrac{\pi}{12}]\)单调递减;

\(-\cfrac{\pi}{2}\leq 2x-\cfrac{\pi}{3}\leq \cfrac{\pi}{6}\)时,求得函数在区间\([-\cfrac{\pi}{12},\cfrac{\pi}{4}]\)单调递增;





静雅凤中$\;\cdot\;$三角函数和解三角形专题$\;\cdot\;$针对性训练题 (2016宝鸡市第二次质量检测第17题)考查目的:三角函数和解三角形的综合应用 Cnblogs_LT02.bmp在$\Delta ABC$中,已知$sin^2A+sin^2B+sinAsinB=sin^2C$,其中角$A、B、C$的对边分别为$a、b、c$, (1).求角$C$的大小。 (2).求$\cfrac{a+b}{c}$的取值范围。

分析:(1)角化边,由$\cfrac{a}{2R}=sinA,\cfrac{b}{2R}=sinB,\cfrac{c}{2R}=sinC$ 得到$a^2+b^2+ab=c^2$,即$a^2+b^2-c^2=-ab$, 故由余弦定理得到$cosC=\cfrac{a^2+b^2-c^2}{2ab}=-\cfrac{1}{2}$, 又$C\in (0,\pi)$,故$C=\cfrac{2\pi}{3}$。 (2)由(1)可知,$A+B=\cfrac{\pi}{3}$,即$A=\cfrac{\pi}{3}-B$ 边化角,由$a=2RsinA,b=2RsinB,c=2RsinC$ $\cfrac{a+b}{c}=\cfrac{sinA+sinB}{sinC}=\cfrac{2\sqrt{3}}{3}(sinA+sinB)$ $=\cfrac{2\sqrt{3}}{3}[sin(\cfrac{\pi}{3}-B)+sinB]$ $=\cfrac{2\sqrt{3}}{3}[\cfrac{\sqrt{3}}{2}cosB-\cfrac{1}{2}sinB+sinB]$ $=\cfrac{2\sqrt{3}}{3}(\cfrac{1}{2}sinB+\cfrac{\sqrt{3}}{2}cosB)$ $=\cfrac{2\sqrt{3}}{3}sin(B+\cfrac{\pi}{3})$, 计算角B的取值范围由 $\begin{cases}B>0\\ \cfrac{\pi}{3}-B>0\end{cases}$ $B\in (0,\cfrac{\pi}{3})$ $B+\cfrac{\pi}{3}\in (\cfrac{\pi}{3},\cfrac{2\pi}{3})$ $\cfrac{\sqrt{3}}{2} < sin(B+\cfrac{\pi}{3}) \leq 1 $ $1 即$\cfrac{a+b}{c}$的取值范围为$(1,\cfrac{2\sqrt{3}}{3}]$。

静雅凤中$\;\cdot\;$三角函数和解三角形专题$\;\cdot\;$针对性训练题 考查目的:三角函数的变换;题型:三角函数的求值,给值求值 Cnblogs_LT02.bmp已知$\alpha$为第二象限角,$sin(\alpha+\cfrac{\pi}{4})=\cfrac{\sqrt{2}}{10}$,则$tan\cfrac{\alpha}{2}$的值为多少?

法1:变形得到$\cfrac{\sqrt{2}}{2}(sin\alpha+cos\alpha)=\cfrac{\sqrt{2}}{10}$,解得$sin\alpha+cos\alpha=\cfrac{1}{5}$, 又因为$\alpha$为第二象限角,再结合勾股数可得$sin\alpha=\cfrac{4}{5},cos\alpha=-\cfrac{3}{5}$;故$tan\alpha=-\cfrac{4}{3}$, 又由八卦图法可知$\cfrac{\alpha}{2}$在第一、三象限,故$tan\cfrac{\alpha}{2}>0$, 再由$tan\alpha=-\cfrac{4}{3}=\cfrac{2tan\cfrac{\alpha}{2}}{1-(tan\cfrac{\alpha}{2})^2}$, 解方程得到$tan\cfrac{\alpha}{2}=2$; 法2:同上法,得到$sin\alpha=\cfrac{4}{5},cos\alpha=-\cfrac{3}{5}$; $tan\cfrac{\alpha}{2}=\cfrac{sin\cfrac{\alpha}{2}}{cos\cfrac{\alpha}{2}}=\cfrac{2sin\cfrac{\alpha}{2}cos\cfrac{\alpha}{2}}{2cos\cfrac{\alpha}{2}cos\cfrac{\alpha}{2}}$ $=\cfrac{sin\alpha}{1+cos\alpha}=\cfrac{\cfrac{4}{5}}{1-\cfrac{3}{5}}=2$;

静雅凤中$\;\cdot\;$三角函数和解三角形专题$\;\cdot\;$针对性训练题 考查目的:三角函数的变换,三角函数的性质 Cnblogs_LT02.bmp已知$f(x)=2Acos^2(\omega x+\phi)(A>0,\omega>0,0 $A.[k\pi-\cfrac{2\pi}{3} ,k\pi-\cfrac{\pi}{6}](k\in Z)$;$\hspace{2cm}$ $B.[k\pi-\cfrac{\pi}{6} ,k\pi+\cfrac{\pi}{3}](k\in Z)$; $C.[k\pi-\cfrac{5\pi}{12} ,k\pi+\cfrac{\pi}{12}](k\in Z)$;$\hspace{2cm}$ $D.[k\pi+\cfrac{\pi}{12} ,k\pi+\cfrac{7\pi}{12}](k\in Z)$;

分析:这类题目一般需要先将$f(x)$转化为正弦型或者余弦型,再利用给定的条件分别求$\omega$和$\phi$, 由$f(x)=2Acos^2(\omega x+\phi)=A[cos2(\omega x+\phi)+1]=Acos(2\omega x+2\phi)$, 故其周期为$T=\cfrac{2\pi}{2\omega}=\cfrac{\pi}{\omega}$, 又由题目可知$\cfrac{T}{4}=\cfrac{\pi}{3}-\cfrac{\pi}{12}=\cfrac{\pi}{4}$,则$T=\pi=\cfrac{\pi}{\omega}$, 故$\omega=1$,则函数简化为$f(x)=Acos(2x+2\phi)$, 再利用直线$x=\cfrac{\pi}{3}$是函数$f(x)$图象上的一条对称轴, 故$2\times \cfrac{\pi}{3}+2\phi=k\pi,(k\in Z)$, 解得$\phi=\cfrac{k\pi}{2}-\cfrac{\pi}{3}$,令$k=1$,则$\phi=\cfrac{\pi}{6}\in (0,\cfrac{\pi}{2})$, 满足题意,故$f(x)=Acos(2x+2\phi)=Acos(2x+\cfrac{\pi}{3})$. 令$2k\pi-\pi\leq 2x+\cfrac{\pi}{3}\leq 2k\pi(k\in Z)$, 解得$k\pi-\cfrac{2\pi}{3}\leq x \leq k\pi-\cfrac{\pi}{6}$, 即单调递增区间为$A.[k\pi-\cfrac{2\pi}{3} ,k\pi-\cfrac{\pi}{6}](k\in Z)$;

静雅凤中$\;\cdot\;$三角函数和解三角形专题$\;\cdot\;$针对性训练题 考查目的:三角函数的变换技巧(连比形式,巧设比例因子) Cnblogs_LT02.bmp在$\Delta ABC$中,$tanA:tanB:tanC=1:2:3$,求$\cfrac{AC}{AB}$的值;

分析:(巧设比例因子)设$tanA=k,tanB=2k,tanC=3k,(k>0)$, 则由$tanA\times tanB\times tanC=tanA+tanB+tanC$可知, $6k=6k^3$,解得$k=1$.则有$tanA=1,tanB=2,tanC=3$, 再设比例因子,比如设$sinB=2m,cosB=m,(m>0)$,由平方关系可得,$5m^2=1,m=\cfrac{1}{\sqrt{5}}$, 故$sinB=\cfrac{2}{\sqrt{5}},sinC=\cfrac{3}{\sqrt{10}}$,则$\cfrac{AC}{AB}=\cfrac{sinB}{sinC}=\cfrac{\cfrac{2}{\sqrt{5}}}{\cfrac{3}{\sqrt{10}}}=\cfrac{2\sqrt{2}}{3}$.

静雅凤中$\;\cdot\;$三角函数和解三角形专题$\;\cdot\;$针对性训练题 (三角函数图像性质和解三角形结合)(2017•福州模拟) Cnblogs_LT02.bmp在$\Delta ABC$中,角$A,B,C$的对边分别为$a,b,c$,满足$(2b-c)\cdot cosA=a\cdot cosC$。  (1)求角$A$的大小;(考查角度:解三角形) (2)若$a=3$,求$\Delta ABC$的周长的最大值。(考查角度:三角函数图像性质)

分析: (1)由$(2b-c)\cdot cosA=a\cdot cosC$及正弦定理, 得$(2sinB-sinC)cosA=sinAcosC$, 所以$2sinBcosA=sinCcosA+sinAcosC$, 所以$2sinBcosA=sin(C+A)=sinB$, 因为$B\in (0,π)$,所以$sinB\neq 0$, 因为$A\in (0,π)$,$cosA=\cfrac{1}{2}$,所以$A=\cfrac{\pi}{3} $。 (2)由(1)得$A=\cfrac{\pi}{3} $, 由正弦定理得$\cfrac{b}{sinB}=\cfrac{c}{sinC} =\cfrac{a}{sinA} =\cfrac{3}{\frac{\sqrt{3}}{2}} =2\sqrt{3}$, 所以$b=2\sqrt{3}\cdot sinB$; $c=2\sqrt{3}\cdot sinC$, $\Delta ABC$的周长:$l=3+2\sqrt{3}\cdot sinB+2\sqrt{3}\cdot sinC$ $=3+2\sqrt{3}\cdot sinB+2\sqrt{3}\cdot sin(\cfrac{2\pi}{3}-B)$ $=3+2\sqrt{3}\cdot sinB+2\sqrt{3}\cdot (\cfrac{\sqrt{3}}{2}cosB+\cfrac{1}{2}sinB)$ $=3+3\sqrt{3}sinB+3cosB=3+6sin(B+\cfrac{\pi}{6})$ 因为$B\in(0,\cfrac{2\pi}{3})$,所以当$B=\cfrac{\pi}{3}$ 时,$\Delta ABC$的周长取得最大值,最大值为9。 反思总结:三角函数和解三角形的交汇处的题型 这类题目往往会设置第一问求一个角(如$A$),第二问已知边$a$(注意对角和对边的关系),接下来可以考查的方向有 ①再已知$S_△$,求解$b+c$的取值范围; 或者已知$b+c$求$S_△$的取值范围。 ②求解$msinB+nsinC$的取值范围($m、n$是实数) ③求解$msinB\cdot nsinC$的取值范围($m、n$是实数) ④求解$S_△=\cfrac{1}{2}bcsinA$的取值范围 ⑤求解周长的取值范围 $l=a+b+c$ ⑥求解类似周长的取值范围 $l=2a+3b-c$ ⑦难点:自变量的取值范围,已知三角形和锐角三角形时,自变量的范围是不一样的。

静雅凤中$\;\cdot\;$三角函数和解三角形专题$\;\cdot\;$针对性训练题 (2017高考真题 理科全国卷2的第17题) Cnblogs_gkzt02.bmp$\Delta ABC$ 的内角A,B,C的对边分别是$a,b,c$,已知$sin(A+C)=8sin^2\cfrac{B}{2}$。 (1)求$cosB$. (2)若$a+c=6$,$S_{\Delta ABC}=2$,求$b$.

分析:$sin(A+C)=sinB=8\cdot \cfrac{1-cosB}{2}$,得到$sinB=4(1-cosB)$, 即$\sqrt{1-cos^2B}=4(1-cosB)$,平方得到$17cos^2B-32cosB+15=0$。 由十字相乘法得到 $(17cosB-15)(cosB-1)=0$,得到$cosB=\cfrac{15}{17}$或$cosB=1(舍去)$, 故$cosB=\cfrac{15}{17}$; (2)若$a+c=6$,$S_{\Delta ABC}=2$,求$b$. 分析:由$cosB=\cfrac{15}{17}$得到$sinB=\cfrac{8}{17}$, 由$S_{\Delta ABC}=\cfrac{1}{2}acsinB=2$得到,$ac=\cfrac{17}{2}$, 故$b^2=a^2+c^2-2accosB=(a+c)^2-2ac-2accosB=6^2-2\cdot \cfrac{17}{2}-2\cdot \cfrac{17}{2}\cdot\cfrac{15}{17}=4$, 故$b=2$。

静雅凤中$\;\cdot\;$三角函数和解三角形专题$\;\cdot\;$针对性训练题 (2017高考真题 文科全国卷2的第16题) Cnblogs_gkzt02.bmp$\Delta ABC的内角A,B,C的对边分别是a,b,c$,若$2bcosB=acosC+ccosA$,则$B$=________.

法1:角化边,得到$2b\cdot \cfrac{a^2+c^2-b^2}{2ac}=a\cdot \cfrac{a^2+b^2-c^2}{2ab}+c\cdot \cfrac{b^2+c^2-a^2}{2bc}$ 两边同乘以$abc$,约掉分母,化简整理为$a^2+c^2-b^2=ac$, 故$cosB=\cfrac{a^2+c^2-b^2}{2ac}=\cfrac{1}{2}$,又$b\in (0,\pi)$,则$B=\cfrac{\pi}{3}$。 法2:边化角,由已知得到$2sinBcosB=sinAcosC+cosAsinC=sin(A+C)=sinB$,故得到$cosB=\cfrac{1}{2}$,又$B\in (0,\pi)$,则$B=\cfrac{\pi}{3}$。

静雅凤中$\;\cdot\;$三角函数和解三角形专题$\;\cdot\;$针对性训练题 (2017高考真题 文科全国卷2的第13题) Cnblogs_gkzt01.bmp函数$f(x)=2cosx+sinx$的最大值为_______。

分析:$f(x)=\sqrt{5}sin(x+\phi)(tan\phi=2)$,故$f(x)_{max}=\sqrt{5}$。

静雅凤中$\;\cdot\;$三角函数和解三角形专题$\;\cdot\;$针对性训练题 (2017高考真题 理科全国卷2的第14题) Cnblogs_gkzt01.bmp函数$f(x)=sin^2x+\sqrt{3}cosx-\cfrac{3}{4}(x\in[0,\cfrac{\pi}{2}])$的最大值为_______。

分析:由于$x\in[0,\cfrac{\pi}{2}]$,则$cosx\in [0,1]$, 令$cosx=t\in [0,1]$,$f(x)=1-cos^2x+\sqrt{3}cosx-\cfrac{3}{4}=1-t^2+\sqrt{3}t-\cfrac{3}{4}=-(t-\cfrac{\sqrt{3}}{2})^2+1=g(t)$, 故当$t=\cfrac{\sqrt{3}}{2}$时,$g(t)_{max}=f(x)_{max}=1$。 反思总结:这类题目常有两个考查方向:①转化为正弦型求最值;②转化为二次型求最值。

静雅凤中$\;\cdot\;$三角函数和解三角形专题$\;\cdot\;$针对性训练题 (2017高考真题 文科全国卷1的第11题) Cnblogs_gkzt02.bmp$\Delta ABC的内角A,B,C的对边分别是a,b,c$,已知$sinB+sinA\cdot (sinC-cosC)=0,a=2,c=\sqrt{2}$,则$C$=________。

分析:由于$sinB=sin(A+C)=sinAcosC+cosAsinC$,则有$sinAcosC+cosAsinC+sinAsinC-sinAcosC=0$, 即$cosAsinC+sinAsinC=0$,又因为$sinC\neq 0$,故得到$sinA+cosA=0$,即$tanA=-1$ ,即$A=\cfrac{3\pi}{4}$, 由正弦定理$\cfrac{a}{sinA}=\cfrac{c}{sinC}$,将$a=2,c=\sqrt{2}$代入得到$sinC=\cfrac{1}{2}$,故$C=\cfrac{\pi}{6}$。

静雅凤中$\;\cdot\;$三角函数和解三角形专题$\;\cdot\;$针对性训练题 (2017高考真题 文科全国卷1的第15题) Cnblogs_gkzt02.bmp已知$\alpha\in(0,\cfrac{\pi}{2})$,$tan\alpha=2$,则$cos(\alpha-\cfrac{\pi}{4})$=__________。

分析:由$tan\alpha=2,\alpha\in(0,\cfrac{\pi}{2})$,故有$sin\alpha=2k,cos\alpha=k(k>0)$, 由平方关系可知$k=\cfrac{\sqrt{5}}{5}$,故$sin\alpha=\cfrac{2\sqrt{5}}{5}$,$cos\alpha=\cfrac{\sqrt{5}}{5}$, 则$cos(\alpha-\cfrac{\pi}{4})=cos\alpha\cdot cos\cfrac{\pi}{4}+sin\alpha\cdot sin\cfrac{\pi}{4}=\cfrac{\sqrt{5}}{5}\times \cfrac{\sqrt{2}}{2}+\cfrac{2\sqrt{5}}{5}\times \cfrac{\sqrt{2}}{2}=\cfrac{3\sqrt{10}}{10}$。

转载于:https://www.cnblogs.com/wanghai0666/p/6213875.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值