CF 375D. Tree and Queries【莫队 | dsu on tree】

题意:

一棵树,询问一个子树内出现次数$≥k$的颜色有几种

 


 

强制在线见上一道

用莫队不知道比分块高到哪里去了,超好写不用调7倍速度!!!

可以用分块维护出现次数这个权值,实现$O(1)-O(\sqrt{N})$修改查询

[update 2017-03-22]还可以用dsu on tree做,并不想再写了...

 

 

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e5+5, M=320;
inline int read(){
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}

int n,Q,a[N],u,k;

struct edge{int v,ne;}e[N<<1];
int cnt,h[N];
inline void ins(int u,int v){
    e[++cnt]=(edge){v,h[u]}; h[u]=cnt;
    e[++cnt]=(edge){u,h[v]}; h[v]=cnt;
}
int dfc,L[N],R[N];
int t[N];
void dfs(int u,int fa){
    L[u]=++dfc; a[dfc]=t[u];
    for(int i=h[u];i;i=e[i].ne)
        if(e[i].v!=fa) dfs(e[i].v, u);
    R[u]=dfc;
}

int block,m,pos[N];
struct _blo{int l,r;} b[M];
void ini(){
    block=sqrt(n);
    m=(n-1)/block+1;
    for(int i=1;i<=n;i++) pos[i]=(i-1)/block+1;
    for(int i=1;i<=m;i++) b[i].l=(i-1)*block+1, b[i].r=i*block;
    b[m].r=n;
}
struct Block{
    int sum[M],a[N];
    void add(int x,int v) {sum[pos[x]]+=v; a[x]+=v;}
    int suf(int x){
        if(x>n) return 0;
        int p=pos[x], ans=0;
        if(p==m) for(int i=x;i<=n;i++) ans+=a[i];
        else{
            for(int i=x; i<=b[p].r; i++) ans+=a[i];
            for(int i=p+1; i<=m; i++) ans+=sum[i];
        }
        return ans;
    }
}B;

struct meow{
    int l,r,k,id;
    bool operator <(const meow &x) const {return pos[l]<pos[x.l] || (pos[l]==pos[x.l] && r<x.r);}
}q[N];
int c[N], ans[N];
inline void add(int x) {B.add(c[x], -1); c[x]++; B.add(c[x], 1);}
inline void del(int x) {B.add(c[x], -1); c[x]--; B.add(c[x], 1);}
void modui(){
    int l=1,r=0;
    for(int i=1;i<=Q;i++){
        while(r<q[i].r) r++, add(a[r]);
        while(r>q[i].r) del(a[r]), r--;
        while(l<q[i].l) del(a[l]), l++;
        while(l>q[i].l) l--, add(a[l]);
        ans[ q[i].id ]=B.suf( q[i].k );
    }
}
int main(){
//    freopen("in","r",stdin);
    n=read(); Q=read(); ini();
    for(int i=1;i<=n;i++) a[i]=t[i]=read();
    for(int i=1;i<n;i++) ins(read(), read());
    dfs(1,0);
    for(int i=1;i<=Q;i++) u=read(), k=read(), q[i]=(meow){L[u], R[u], k, i};
    sort(q+1, q+1+Q);
    modui();
    for(int i=1;i<=Q;i++) printf("%d\n",ans[i]);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值