python 矩阵运算 for循环_如何用Python科学计算中的矩阵替代循环?

本文介绍了如何使用Python进行矩阵运算,特别是针对拉普拉斯方程的求解,提出用矩阵运算替代传统的for循环。推荐了numexpr库以提升大矩阵运算速度,并分享了使用numpy和Python内置库提升性能的技巧,包括利用map、lambda表达式生成迭代参数,使用矩阵掩膜简化循环,以及结合Cython和weave实现更高效的计算。同时,强调在实际应用中结合numpy、scipy等库以提高效率。

比如求一个平面稳态导热问题,控制方程就是拉普拉斯方程:

(我才发现原来有[插入公式]这个功能)

按照最简单的毅种循环来写就是:

def laplace(u):

nx, ny = u.shape

for i in xrange(1,nx-1):

for j in xrange(1, ny-1):

u[i,j] = ((u[i+1, j] + u[i-1, j]) * dy2 + (u[i, j+1] + u[i, j-1]) * dx2) / (2*(dx2+dy2))

你们都不知道numexpr的么←_←

比numpy还黑的科技→_→

虽然能用的运算没多少吧但是对大矩阵的整体运算还是很快的←_←

最近正好在学numpy这个模块。题主可以看看这个教程,不是很全,但是科学计算方面还是有不少东西的:NumPy-快速处理数据

引用教程中的代码:

import time

import math

import numpy as np

x = [i * 0.001 for i in xrange(1000000)] # 初始化数组0.000~999.999

start = time.clock()

for i, t in enumerate(x): # 用循环计算正弦值

x[i] = math.sin(t)

print "math.sin:", time.clock() - start

x = [i * 0.001 for i in xrange(1000000)]

x = np.array(x) # 初始化矩阵(这里是一维)

start = time.clock()

np.sin(x,x) # numpy的广播计算(代替循环)

pri

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值