比如求一个平面稳态导热问题,控制方程就是拉普拉斯方程:
(我才发现原来有[插入公式]这个功能)
按照最简单的毅种循环来写就是:
def laplace(u):
nx, ny = u.shape
for i in xrange(1,nx-1):
for j in xrange(1, ny-1):
u[i,j] = ((u[i+1, j] + u[i-1, j]) * dy2 + (u[i, j+1] + u[i, j-1]) * dx2) / (2*(dx2+dy2))
你们都不知道numexpr的么←_←
比numpy还黑的科技→_→
虽然能用的运算没多少吧但是对大矩阵的整体运算还是很快的←_←
最近正好在学numpy这个模块。题主可以看看这个教程,不是很全,但是科学计算方面还是有不少东西的:NumPy-快速处理数据
引用教程中的代码:
import time
import math
import numpy as np
x = [i * 0.001 for i in xrange(1000000)] # 初始化数组0.000~999.999
start = time.clock()
for i, t in enumerate(x): # 用循环计算正弦值
x[i] = math.sin(t)
print "math.sin:", time.clock() - start
x = [i * 0.001 for i in xrange(1000000)]
x = np.array(x) # 初始化矩阵(这里是一维)
start = time.clock()
np.sin(x,x) # numpy的广播计算(代替循环)
pri

本文介绍了如何使用Python进行矩阵运算,特别是针对拉普拉斯方程的求解,提出用矩阵运算替代传统的for循环。推荐了numexpr库以提升大矩阵运算速度,并分享了使用numpy和Python内置库提升性能的技巧,包括利用map、lambda表达式生成迭代参数,使用矩阵掩膜简化循环,以及结合Cython和weave实现更高效的计算。同时,强调在实际应用中结合numpy、scipy等库以提高效率。
最低0.47元/天 解锁文章
201

被折叠的 条评论
为什么被折叠?



