Keras的优缺点

参加过几个机器学习和深度学习的比赛后,对Keras有更深刻的认识。作为一个深度学习工具,Keras是我见过的最易用的工具了。

优点:

1、API简单,易用。

2、文档齐全,并且文档内容组织地很好。从简单到复杂,一步步的指引。

3、扩展性好。后端支持Tensorflow, theano,mxnet,cntk.  而且自定义层也比较好写。

4、使用人群分布很广。深度学习的初学者喜欢用,制造技术'轮子'的主力人群(博士和研究生)也喜欢用。这点很重要。因为我注意到,当一个新的技术出来的时候,往往你很快就能找到相关的Keras例子。你很容易找到使用Keras的同道进行交流。

缺点:

1、速度慢。后端如果使用mxnet或cntk,速度会快些;如果使用Tensorflow或theano,速度很慢。而且Keras本身是一个中间层,通过它调用Tensorflow或theano,会比单独使用Tensorflow或theano要慢。

2、程序占用GPU内存比较多。我以前从来没遇到过,模型加一层Dropout或者BatchNormalization就会导致GPU内存溢出。但最近用Keras训练一个大尺寸的U-NET模型的时候,就频繁遇到了GPU内存溢出问题。此外,想要使用Keras的PRelu激活层,那你得准备更多的GPU内存才行。究其原因,可能是Keras的层,为了扩展性好,大多数是用Python实现的。在性能和内存管理方面缺乏效率。

有鉴于此,我准备慢慢转到mxnet和pytorch上.

 

 

 

转载于:https://my.oschina.net/qinhui99/blog/1533770

### ResNet50模型的优缺点分析 #### 优点 1. **解决退化问题** ResNet50通过引入残差连接(skip connections),成功解决了深层神经网络中的退化问题。随着网络层数增加,传统CNN可能出现性能饱和甚至下降的情况,而ResNet的设计使得即使在网络非常深的情况下,仍能保持良好的性能[^3]。 2. **易于优化训练** 残差学习的核心思想是让每一层去拟合一个残差映射而非直接拟合目标函数,这种设计显著降低了训练难度并提高了收敛速度。因此,在实际应用中,ResNet50通常能够更快达到较高的精度水平。 3. **灵活性强** 基于原始ResNet架构,后续衍生出了多种改进版本如ResNeXt、Inception-ResNet等,这些变体进一步扩展了其应用场景范围。此外,ResNet50本身也广泛应用于图像分类、目标检测等多个领域,并取得了优异成果[^2]。 4. **预训练权重可用性高** 在许多框架(例如TensorFlow和Keras)中均提供了基于大规模数据集(如ImageNet)预先训练好的ResNet50模型参数,这极大地促进了迁移学习的发展,使开发者能够在较小规模的数据上快速构建高效解决方案。 #### 缺点 1. **计算资源需求较高** 尽管ResNet50相比更深更复杂的变种(比如ResNet101或ResNet152)已经相对轻量级,但对于某些硬件配置较低或者实时处理要求严格的场景来说仍然可能存在运行效率不足的问题[^1]。 2. **过拟合风险存在** 如果没有足够的正则化手段配合,则当面对小样本数据集时容易发生过拟合现象。此时可能需要额外采取措施来增强泛化能力,例如加入Dropout层、调整超参以及采用更多样化的增广方法等操作。 3. **特定任务下效果未必最佳** 并不是所有情况下ResNet系列都会优于其他类型的卷积神经网络结构;具体到不同行业背景下的特殊用途里头,简单传统的CNN反而有可能取得更好的表现——就像提到过的金属铸造项目那样。 ```python from tensorflow.keras.applications import ResNet50 model = ResNet50(weights='imagenet', include_top=False) print(model.summary()) ``` 上述代码展示了如何利用Keras加载带有ImageNet预训练权重但不包含顶层全连接部分的ResNet50实例对象。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值