[Spark RDD_add_2] Spark RDD 分区补充内容


 

  【Spark & Hadoop 的分区】

  1. Spark 的分区是切片的个数,每个 RDD 都有自己的分区数。
  2. Hadoop 的分区指的是 Reduce 的个数,是 Map 过程中对 Key 进行分发的目的地。

 

  

  【指定分区 repartition 和 coalesce】

  rdd.repartition() 调用的就是 coalesce,始终进行 shuffle 操作。
  如果是减少分区,推荐使用 coalesce,可以指定是否进行 shuffle 操作。
  通过 coalesce 增加分区时,必须指定 shuffle 为 true,否则分区数不变。

 

  

 

  

 

 

 


 

转载于:https://www.cnblogs.com/share23/p/9783640.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值