持续同调

构建VR复形(维托里斯-里普斯复形)

在二维平面中,构建从圆形结构中取样的VR复形的可视化的主要步骤:

 随着\epsilon-圆的大小不断变大,拓扑模型特征从诞生到消亡的图像。能保持更长时间的特征是有用的特征,而寿命很短的特征更可能是噪声。这个过程称为持续同调,因为它发现了在你持续变化 \epsilon 时,拓扑空间中持续存在的同源特征。

 

链群

单纯复形,  边界的边界总是 0

 

链复形

链复形: S 是一个单纯 p 复形。 C_n(S) 是 S 的 n 链, n≤p ,链复形 \mathscr C(S) 是  \mathscr C(S) = \sum^{p}_{n=0}\partial(C_n(S)) \\
换句话说
\mathscr C(S) = \partial(C_0(S)) + \partial(C_1(S)) \ + \ ... \ + \ \partial(C_p(S)) \\

现在我们可以定义怎么在单纯复形中找到 p 圈。

  • 核: \partial(C_n) 的核(记作 Ker(\partial(C_n)) )是 n 链 Z_n \subseteq C_n 的群,其中 \partial(Z_n) = 0
  • 边界的像:边界 \partial_n (一些 n 链的边界)的像 Im(\partial_n) 是边界的集合

 

同调群

  • 第 n 个同调群:第 n 个同调群 H_n 定义为 H_n=Ker\partial_n/Im\partial_{n+1} 。
  • 连通数:第 n 个连通数 b_n 定义为 H_n 的维度, b_n = dim(H_n) 。

 

贝蒂数

第 k 个贝蒂数是k维洞的个数。

A torus.
Ex. 环面的贝蒂数 b 0 = 1, b 1 = 2, b 2 = 1
  • b0: 连通分量的个数
  • b1: 1维或者 "circular" holes 的个数
  • b2 : 2维 "voids" or "cavities"的个数

bk(X)=dim(Hk(X)):For a non-negative integer k, the kth Betti number bk(X) of the space X is defined as the rank (number of linearly independent generators) of the abelian group Hk(X), the kth homology group of X.

 

例子:

 

转载于:https://www.cnblogs.com/skykill/p/9129543.html

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值