- 博客(322)
- 资源 (3)
- 收藏
- 关注
原创 HTS-AT工作介绍
HTS-AT(Hierarchical Token-Semantic Audio Transformer)是一种专为音频分类和声音事件检测任务设计的音频处理模型。它通过结合Swin Transformer和令牌语义模块,实现了音频领域的stae-of-the-art(SOTA)性能。
2024-11-02 11:21:11 402
原创 大型语言模型(LLM)的小型化研究进展
2024年,大型语言模型(LLM)的小型化研究取得了显著进展,主要采用以下几种方法实现。这些方法各有优势和适用场景,研究者可以根据具体需求和资源限制选择合适的小型化策略。通过这些技术,可以在保持模型性能的同时,实现模型的小型化和加速,使其更适合在各种设备上部署。
2024-11-02 11:00:09 233
原创 知识蒸馏概念(Knowledge Distillation)的学习
知识蒸馏(Knowledge Distillation)是一种模型压缩技术,它允许一个小型的“学生”模型通过模仿一个大型的“教师”模型的行为来学习。这种方法最初由Hinton在2015年提出,旨在将一个大型、准确、预训练的网络的暗知识转移到一个小型的网络中,以提高小型网络的性能。
2024-11-02 10:58:26 417
原创 理解深度学习模型——高级音频特征表示的分层理解
理解深度学习模型对研究者和开发者具有深远的意义。提高模型性能:深入理解模型可以帮助研究者和开发者识别和修正模型的缺陷,优化模型结构和训练过程,从而提高模型的性能。增强模型的可解释性:通过理解模型的内部工作机制,可以开发出更加透明的模型,这对于需要模型解释的应用领域(如医疗诊断、自动驾驶等)至关重要。促进跨领域应用:对模型的深刻理解可以促进其在不同领域的应用,例如,将一个在图像识别领域表现良好的模型迁移到视频分析或自然语言处理任务。加速创新:理解现有模型的工作原理可以激发新的研究思路和技术,推动创新。
2024-10-25 09:29:55 699 1
原创 深度学习实践:理解理论背后的机制,体会理论与实际应用中的差距
通过深度学习的实际实践,可以更深刻地理解理论背后的机制,同时揭示理论与实际应用中的差距。以下是一些如何通过实践来加深理解深度学习概念、发现理论与实际差距,并改进和优化模型的具体步骤。通过在实践中不断发现问题、调整模型、优化流程,能够加深对深度学习的理解,并提升模型的实际性能。
2024-09-13 18:06:32 844
原创 深度学习中实验、观察与思考的方法与技巧
在深度学习中,实验、观察与思考是理解和改进模型性能的关键环节。以下是一些有效的方法与技巧,可以帮助你在深度学习实践中系统性地开展实验、分析结果并进行深入思考。通过这些方法,你可以在深度学习实验中有条不紊地推进,从而加深对深度学习原理的理解,并通过不断的实践、观察和思考,逐步提升模型性能和你的技术水平。
2024-09-13 17:57:49 989
原创 如何通过深度学习实践来理解深度学习的核心概念
通过深度学习实践可以更好地理解其核心概念,因为理论知识在实际应用中会面临复杂性和挑战。通过实践,不仅可以加深对深度学习概念的理解,还能发现理论与实际之间的差距,进而对模型进行改进和优化。实践中遇到的问题(如梯度消失、过拟合、训练效率低等)能促使你深入思考,进而更加全面地掌握深度学习的核心概念。
2024-09-13 17:56:14 961
原创 注意力权重可视化技术的利用与模型分析和优化
注意力权重可视化是深度学习和自然语言处理领域中的一种可视化技术,它主要用于帮助我们理解模型在进行预测或生成输出时是如何“关注”输入的不同部分的。这种技术特别适用于使用了注意力机制(Attention Mechanism)的模型,如Transformer模型。
2024-08-09 16:18:51 1082 1
原创 图解transformer和相应代码及参数设定
图解transformer会更加直观一些,比代码直观,其中的参数也能够更加直观的认识,加深印象,所以是一种比较好的方式来理解。下面这个图蕴含着丰富的信息,值得好好解读一下,其中每个模块和层及名称都是对应模型设定的一部分。这个图画得很精确,简洁,也很经典,信息量也大。后面的参数和代码实现,都和图中内容一一对应,可以说,这个图是打开transformer的一把钥匙。
2024-08-07 09:21:48 565
原创 Audio Spectrogram Transformer (AST)工作介绍
Audio Spectrogram Transformer (AST),是一种基于 Transformer 模型的音频分类方法。AST 利用了 Transformer 模型在捕获全局特征方面的优势,将音频信号转换为频谱图进行处理。本文是对 AST 及其相关研究工作的详细介绍。
2024-08-04 15:42:19 1050
原创 深度学习:PyCharm中运行Bash脚本
GitHub上的开源代码有很多是用 Bash 脚本来自动化数据处理、模型训练和模型评估等任务的,如何使用PyCharm来运行Bash脚本,从而快速上手GitHub开源代码,是一个实用的技巧,本文主要介绍PyCharm中运行Bash脚本的方法。在 PyCharm 中运行 Bash 脚本非常灵活,你可以通过内置的 Terminal 直接运行,也可以通过 Run/Debug Configurations 配置脚本运行,或者通过 Python 脚本调用 Bash 脚本。选择适合你的方法即可。
2024-06-16 12:15:12 2458 4
原创 深度学习:使用argparse 模块
argparse 模块是 Python 标准库中的一个模块,用于解析命令行参数。它可以帮助开发者轻松地编写用户友好的命令行接口,使得程序可以通过命令行参数来接受用户输入,并根据这些输入执行相应的功能。以一段代码为例,展示了如何使用 argparse 模块解析命令行参数并执行特定操作。通过结合命令行参数和脚本逻辑,可以方便地实现复杂的任务自动化流程。上述示例详细解释了命令行参数的传递和处理方式,有助于更好地理解和使用 argparse 模块。
2024-06-13 08:10:28 1126
原创 深度学习-使用 Bash 脚本
深度学习任务通常涉及大量的数据处理、模型训练、性能评估和模型部署。使用 Bash 脚本来自动化这些任务可以显著提高效率和可重复性。使用 Bash 脚本可以帮助深度学习工程师和研究者更高效地管理其工作流,减少手动操作,降低出错率,并确保实验的一致性和可追踪性。
2024-06-11 11:11:19 1019
原创 了解timm开源库
timm 是一个功能强大且灵活的 PyTorch 库,为计算机视觉任务提供了广泛的预训练模型和优化工具。无论是用于研究、工业应用还是教育,timm 都是一个极其有价值的资源。通过利用 timm 库,用户可以显著提升模型的开发效率和性能,同时减少训练时间和计算资源。
2024-06-06 11:24:23 1459 2
原创 AudioSet 本体与声音实体对象
AudioSet 是由 Google 研究团队开发的一个大规模的音频事件识别数据集,它定义了一个层级化的本体(ontology),用于对音频事件进行分类。它包含了丰富的音频类别,每个类别都有其唯一的标识符(ID)。这些标识符通常基于知识图谱中的,特别是与 Freebase 和 Wikidata 这样的知识库相关联。
2024-06-05 22:25:16 1426
原创 理解不同层的表示(layer representations)
通过逐层提取和组合特征,深度神经网络能够有效地从输入数据中抽象出多层次的信息,从低级物理特征到高级语义特征。这种多层次的表示不仅提高了模型的表示能力和泛化能力,还使得模型更具灵活性和适应性,能够处理复杂的任务和新场景。同时,不同层的表示也提供了可解释性,帮助研究人员和工程师更好地理解和调试深度学习模型。
2024-06-03 07:00:00 607
原创 GPT-4o : OpenAI 在大型语言模型领域的最新进展
GPT-4o 是 OpenAI 在大型语言模型领域的最新进展,通过多方面的优化和改进,提供了更高效、更准确和更可靠的自然语言处理能力。这些进展不仅提升了模型的性能和适用性,还在安全性和道德性方面取得了重要突破,确保了模型在实际应用中的可靠性和公正性。
2024-06-01 10:41:00 705
原创 事物高维表示与事物的本质
事物的高维表示能够更好地反映其本质,原因主要在于高维表示能够捕捉和表达数据的复杂特征和关系。高维表示能够使用多个维度来描述事物的不同特征,每个维度代表不同的特性或属性。高维表示可以捕捉到数据中更多的细节和细微差异,使模型能够更精准地理解和处理不同的输入。在高维空间中,向量之间的距离和方向可以反映数据点之间的复杂关系。高维表示可以捕捉到数据之间的非线性关系,而这些关系往往是低维表示难以表达的。这使得模型在处理复杂任务时能够更准确地理解数据之间的关联。
2024-05-31 16:14:57 908
原创 音频基础模型LTU(Listen, Think, and Understand)
本文探讨一个新型的音频基础模型LTU(Listen, Think, and Understand)的开发,该模型旨在同时具备音频感知和推理能力。这种模型在现有音频模型和大语言模型的基础上进行了融合与创新。
2024-05-30 14:40:05 971
原创 Whisper-AT:抗噪语音识别模型(Whisper)实现通用音频事件标记(Audio Tagger)
Whisper-AT 是建立在 Whisper 自动语音识别(ASR)模型基础上的一个模型。Whisper 模型使用了一个包含 68 万小时标注语音的大规模语料库进行训练,这些语料是在各种不同条件下录制的。Whisper 模型以其在现实背景噪音(如音乐)下的鲁棒性著称。尽管如此,其音频表示并非噪音不变,而是与非语音声音高度相关。这意味着 Whisper 在识别语音时会依据背景噪音类型进行调整。
2024-05-30 12:29:57 2153 4
原创 多任务学习模型-AdaTT
AdaTT在多任务学习领域展现出了强大的性能和广泛的应用潜力。与PLE和MMoE等模型相比,AdaTT通过其自适应融合机制和多层次融合策略,有效地处理了不同任务之间的关系,并促进了知识的共享和特定任务的学习。特别是在任务相关性多样化的情况下,AdaTT能够更好地适应和学习,展现出其独特的优势。
2024-05-27 17:53:18 1506
原创 多任务学习模型-MMoE
MMoE(Multi-gate Mixture-of-Experts)是一种多任务学习模型,由Google的研究团队提出。该模型的核心贡献在于其创新的结构设计,它通过引入多个专家网络(Experts)和门控网络(Gates)来显式地建模不同任务之间的关系,并优化每个任务的表现。
2024-05-25 17:13:38 1076
原创 RLHF的数学表示
RLHF(Reinforcement Learning with Human Feedback)是一种结合了强化学习和人类反馈的机器学习方法。它通常用于训练智能体(agent)在复杂环境中做出决策,同时利用人类的反馈来指导和改进学习过程。RLHF 没有一个统一的数学表示式,因为它依赖于具体的应用场景和实现细节。然而,我们可以从强化学习和人类反馈的角度来描述RLHF的一些关键数学概念。
2024-05-25 09:49:14 435
原创 思维链的数学表示式
思维链(Chain of Thought)是一种在解决复杂问题时,逐步推理和解释问题解决过程的方法。在机器学习和人工智能领域,思维链通常被应用于模型的解释性,特别是在自然语言处理(NLP)任务中。然而,思维链本身并不是一个具有严格数学定义的概念,它更多地描述了一种解决问题的逻辑过程。
2024-05-22 16:23:57 322
原创 多任务学习
多任务学习(Multi-task Learning, MTL)是一种机器学习范式,它旨在同时学习多个相关任务,以提高模型在各个任务上的性能。数学上,多任务学习可以表示为一个联合优化问题,其中模型需要在多个任务上同时优化。
2024-05-22 16:16:53 1642 2
原创 通过函数的形式洞察模型原理和改进方向
数学函数提供了一种精确和通用的方式来表示机器学习模型,使我们能够形式化地描述模型如何将输入映射到输出。通过分析损失函数的形状(如是否凸或有多个局部最小值)和梯度的性质,我们可以了解模型优化的难易程度。数学函数使我们能够在参数空间中探索,找到影响模型性能的关键参数,并识别参数调整对性能的影响。通过分析模型作为函数的平滑度和复杂性,我们可以评估其泛化能力,即模型对未见数据的预测能力。数学函数使我们能够将模型从一个领域迁移到另一个领域,通过分析不同领域的数据分布,我们可以调整模型以适应新的应用场景。
2024-05-16 22:18:02 1148
原创 大模型与函数
大模型与函数紧密相关,函数的概念为理解和分析大模型提供了一个数学框架。在机器学习和深度学习的背景下,一个模型可以被看作是输入和输出之间的一个函数映射。大模型因其庞大的参数数量,能够近似复杂的非线性函数。在训练大模型时,会使用各种数学函数,如激活函数(、损失函数和优化函数。这些函数对模型的学习过程和最终性能有重要影响。在训练过程中,大模型通过最小化损失函数来学习数据的函数关系。损失函数的选择直接影响了模型的优化目标和学习过程。大模型可以用于生成函数,尤其是在生成模型和序列生成任务中。
2024-05-16 10:03:40 763
原创 深度学习模型的训练细节
深度学习模型训练是一个复杂且需要细致操作的过程,涉及多个步骤和技巧。本文是一些关键的方法和中间变量检查的要点介绍。深度学习模型训练是一个涉及多个方面的综合过程,需要对数据、模型结构、训练过程和中间变量进行细致的管理和优化。
2024-05-14 21:14:08 943
原创 PyTorch 的 hook 功能监控和分析模型的内部状态
PyTorch 的 hook 功能是一种强大的工具,它允许用户在模型的前向传播(forward pass)和后向传播(backward pass)的任意点插入自定义函数。这些自定义函数可以用于监控、分析、调试或修改模型的内部状态,如激活值、梯度、权重等。用户在模型的前向传播和后向传播的任意点插入自定义函数,这样可以在模型的执行流程中添加额外的监控或操作,而不改变模型本身的结构。
2024-05-14 20:05:14 1107
原创 神经网络模型的构建与Python类的构造函数
在面向对象编程中,类的构造函数(在 Python 中为 __init__ 方法)是初始化对象状态的地方。在构建神经网络模型时,构造函数用于设置网络的层、参数和架构。以下是介绍如何使用类的构造函数来构建神经网络模型。并介绍一个构建示例——构建 Transformer 模型,通常涉及到定义模型的各个组成部分,包括注意力机制、前馈网络等。在 PyTorch 中,这可以通过定义一个类并在其构造函数中初始化所需的层来实现。
2024-05-13 11:35:48 932
原创 类概念与实际世界
类的概念在面向对象编程(OOP)中是对现实世界的一种抽象,它允许开发者将现实世界中的概念和过程映射到软件系统中。类提供了一种将现实世界中的对象和概念模型化的方式,类中的属性对应于现实世界对象的特征,类的方法代表对象的行为或动作。通过将现实世界的概念映射到类,开发者可以创建出更直观、更易于理解和维护的软件系统。类的概念提供了一种强大的工具,用于模拟、理解和操作现实世界的复杂性。
2024-05-12 12:16:32 765
原创 利用PyTorch实现概率建模和贝叶斯推断
微分编程库如 Pyro 和 Funsor 为在 PyTorch 上进行概率建模和贝叶斯推断提供了强大的工具。这些库特别适合于定义和估计涉及随机变量的概率模型,它们可以用于各种应用。
2024-05-12 00:30:00 814
原创 神经网络模型与前向传播函数
在神经网络中,模型和前向传播函数是紧密相关的概念。模型定义了网络的结构,而前向传播函数描述了数据通过网络的流动方式。通过自定义 forward 方法,你可以精确控制数据如何通过网络流动,以及如何计算最终的输出。这不仅使得 PyTorch 成为一个强大的研究工具,也为实际应用中的模型创新提供了可能。在自定义 forward 方法时,你可以利用 PyTorch 提供的所有构建块,如层、函数和自动微分,来实现你的创意。
2024-05-12 00:00:00 1054
原创 PyTorch 中构建神经网络的常用方法介绍
在 PyTorch 中构建神经网络通常有以下几种方法。每种方法都有其特定的应用场景,选择哪种方法取决于你的具体需求,例如模型的复杂度、是否需要多 GPU 训练、是否需要自定义层或操作等。在实践中,这些方法往往是相互结合使用的,以达到最佳的性能和灵活性。
2024-05-11 12:28:52 1032
原创 使用torch.nn.ModuleList构建神经网络
在 PyTorch 中,torch.nn.ModuleList 是一个持有子模块的类,它是 torch.nn.Module 的一个子类。与 torch.nn.Sequential 不同,ModuleList 不会自动地对添加到其中的模块进行前向传播。相反,它主要用于存储多个模块,并且在需要时可以手动地迭代这些模块。
2024-05-11 12:18:27 732
原创 使用torch.nn.Sequential构建神经网络
torch.nn.Sequential 是 PyTorch 中的一个非常有用的类,它允许用户以一种简单和直观的方式构建神经网络。Sequential 容器可以包含多个神经网络层,这些层会按照它们被添加到 Sequential 中的顺序依次执行。Sequential 是一个很实用的工具,特别是当你需要快速堆叠多个层,或者在实验中尝试不同的层组合时。然而,对于更复杂的网络结构,可能需要定义自己的 nn.Module 子类来更细致地控制网络的行为。
2024-05-11 12:07:23 661
原创 投影与降维
投影是将数据从原始的高维空间映射到一个低维空间的过程,通常这个低维空间的维度小于原始空间。降维是减少数据集中变量数量的技术,旨在提取数据的代表性特征,同时去除无关或冗余的信息。两者都旨在处理高维数据,使其更适合于分析和机器学习模型。投影更多关注于在新空间中保持数据的某些特性,而降维更侧重于去除噪声和冗余信息。投影的结果通常是数据在新空间中的表示,而降维则可能涉及到数据的重构或近似。
2024-05-10 17:10:03 2260 4
原创 类和实例概念:为现实构建程序和构建神经网络模型的方式
类和实例的概念模仿了现实世界中对象的创建和行为。在现实世界中,我们有各种类型的对象,如人、动物、车辆等,每个对象都有其特定的属性(如颜色、大小、重量)和行为(如行走、说话)。类和实例提供了一种方式来模拟这些现实世界的对象及其特性。类和实例的概念可以映射到现实世界中的实体和个体。类可以代表现实世界中的一个概念或类别,而实例则代表这个类别中的一个具体个体。当团队成员使用类和实例的概念时,他们可以更容易地理解彼此的代码,并在项目中进行协作,因为类和实例提供了一种通用的沟通语言。
2024-05-10 15:08:50 960
原创 事物的可能性、重要性和人类关注度的匹配
“重要性和关注度”是一个广泛的概念,可以应用在不同的领域和情境中。重要性和关注度的匹配通常指的是在不同领域或情境中,重要性高的事物或议题是否得到了相应的关注。这种匹配对于确保资源得到有效分配、问题得到及时解决以及社会整体福祉的提高至关重要。
2024-05-09 11:14:09 537
原创 注意力评分转化为概率分布(关注度的量化建模)
在注意力模型中,注意力评分通常表示了模型在处理信息时对不同部分的关注度。将这些评分转换为概率分布,可以帮助模型集中“注意力”在最相关的信息上,同时保留对其他信息的一定程度的敏感性。通过将注意力评分转换为概率分布,模型可以更正式地表达对不同输入元素的关注程度。概率分布是一种数学工具,用于描述不确定性和随机性,非常适合捕捉模型对不同输入的不确定性关注
2024-05-08 12:19:57 696
gps坐标转换软件(好用)
2009-07-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人