自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(201)
  • 资源 (3)
  • 收藏
  • 关注

原创 2023-2024文章与概念盘点

2023-2024文章与概念盘点

2024-01-27 15:05:34 203

原创 Encoder和Decoder的详细介绍

在深度学习中,编码器通常与解码器(Decoder)配对使用,构成了自编码(Autoencoder)或者编码-解码模型(Encoder-Decoder Model)。在这种模型中,编码器负责将输入数据映射到潜在空间中的表示,而解码器则将这种表示映射回原始数据空间。

2024-02-26 14:11:18 549

原创 理解术语token、 Index(idx) 和 Vector(vec) ——nn.Embedding(词嵌入)的使用

在自然语言处理(NLP)和深度学习中,token、idx 和 vec 是代码中常见的缩写符号。这三者之间的关系体现在:给定一个文本序列,首先进行分词并将其转换为Token列表;然后对这些Token进行索引化,用整数Index代替Token;最后,基于词汇表中的Index,从预训练好的词向量矩阵中取出对应的Vector,作为模型的输入特征。

2024-02-26 11:00:14 103

原创 PyTorch中Tensor(张量)数据结构内部观察

PyTorch中Tensor(张量)数据结构内部观察,帮助我们更好理解张量数据结构在深度学习框架中的数值定义。

2024-02-26 10:54:49 200

原创 预训练-微调范式在人工智能领域的深远影响

预训练-微调范式的出现是人工智能领域的一大里程碑,它深刻改变了深度学习模型的训练方式和应用模式,并对整个行业产生了多方面的深远影响。预训练-微调范式的引入和发展,不仅革新了深度学习的研究方法,还从本质上推动了人工智能在理论探索和实际应用中的进步,对整个人工智能行业产生了持久而深远的影响。

2024-02-25 12:03:03 876

原创 预训练(Pre-training)

预训练阶段在深度学习和自然语言处理(NLP)、计算机视觉(CV)等领域的模型构建中起着至关重要的作用。通过在大规模无标签数据集上进行预训练,模型可以学到丰富的语言结构、词汇关系、图像特征等通用知识,并将其编码为参数形式。这种预训练得到的模型能够提供高质量的初始化权重,这些权重包含了对世界广泛而深入的理解。总体来说,预训练和应用开发相辅相成,共同推动了AI技术的发展和落地应用。预训练大大提升了模型性能并降低了对大量标注数据的依赖,而应用开发则确保模型能够在实际问题中发挥出最佳效果。

2024-02-25 11:05:16 451

原创 自然语言处理中关键概念——词嵌入(Word Embedding)

词嵌入(Word Embedding)是一种在自然语言处理中广泛使用的表示方法,它将离散的词汇表中的每个词转换为一个连续向量空间中的稠密向量。这种低维度实数向量能够捕捉词语之间的语义和句法关系。通过训练神经网络模型(如word2vec、GloVe或FastText等),可以在大规模文本语料库上学习到这些词嵌入。经过预训练后,每个单词会被映射到一个固定长度的向量上,这个向量可以反映该单词在整个语料库中的上下文信息和潜在语义特征。词嵌入技术极大地改善了机器学习模型对自然语言的理解能力。

2024-02-24 20:00:43 742

原创 torch.nn.embedding的介绍和用法

nn.Embedding是 PyTorch 中的一个神经网络层,它主要用于将离散的、高维的数据(如词索引)转换为连续的、低维的空间中的稠密向量表示。在自然语言处理(NLP)中,这个层通常用于实现词嵌入(Word Embeddings),即将每个单词映射到一个固定长度的向量上,使得具有相似语义的单词在向量空间中距离相近。

2024-02-24 13:39:25 408

原创 深度学习中数据的转换

原始(文本、音频、图像、视频、传感器等)数据被转化成结构化且适合机器学习算法或深度学习模型使用的格式。总的来说,无论是哪种类型的数据,最终的目标都是将其组织成适合神经网络输入的形式——即具有正确维度、数据类型和结构的张量。

2024-02-23 15:44:52 797

原创 全球知名语音大模型介绍

语音大模型是一种基于人工智能技术构建的大型深度学习模型,主要用于处理复杂的语音相关任务。这些模型不仅在学术界引起了广泛的研究兴趣,也在商业应用中发挥了重要作用,为智能音箱、虚拟助手、自动驾驶汽车、电话客服等多个领域提供了强大的语音交互技术支持。随着技术不断进步,更多的先进语音大模型将会不断涌现。

2024-02-23 11:38:11 1001

原创 深度学习发展里程碑事件2006-2024

2006-2024年,深度学习发展经历众多的里程碑事件,一次次地刺激着人们的神经,带来巨大的兴奋。电影还在继续,好戏在后面,期待……

2024-02-22 13:42:57 659

原创 封装和调用的艺术

封装,就像是生产出一瓶茅台酒后(经历万千工艺流程),装瓶封盒。调用,就是打开一瓶茅台,然后品尝其中的滋味。

2024-02-22 13:11:38 698

原创 先进语言模型带来的变革与潜力

GPT-4等先进语言模型,如同人类通向知识宝库的一把钥匙,让每个人都有可能快速获取到原本可能受限于时空、专业知识门槛或其他条件而难以触及的信息资源。这种即时访问的能力不仅提高了知识传播的效率,也为个人学习、科研探索、企业决策等领域带来了深刻的变革与潜力。

2024-02-21 14:15:51 978

原创 概念、背景和代码

综合来看,概念提供了理论基础和设计思路,背景提供了应用环境和上下文信息,而代码则是将这些理论和思想落实到具体实践层面的工具和载体。

2024-02-21 00:00:00 926

原创 语言模型中“嵌入”(embedding)概念的介绍

嵌入(embedding)是一种尝试通过数的数组来表示某些东西“本质”的方法,其特性是“相近的事物”由相近的数表示。嵌入(Embedding)是一种将高维、离散或符号形式的数据转换为低维连续向量表示的方法。这些连续的数值数组能够捕捉原始数据中难以直接度量和计算的内在特征和关系。在自然语言处理(NLP)领域,嵌入通常用来表示单词、短语或整个文档,通过这种方式,模型可以理解和利用词汇之间的相似性、关联性和上下文信息。

2024-02-20 13:34:38 804

原创 深度学习系列——“试错”发展直觉

运用试错法以发展直觉。面对复杂的深度学习问题时,学习者可以通过不断尝试不同解决方案,并观察其对模型性能的影响,逐渐形成一套针对特定任务的有效策略。这些经验有助于提升对深度学习模型工作原理的直观理解。另外,我们相信交互式学习体验在深度学习中扮演着至关重要的角色。通过实时的、动态的实验和调整,学习者不仅能够深入理解模型的行为和性能,还能培养出对复杂系统的直觉和洞察力。

2024-02-20 10:51:42 512

原创 深度学习发展的艺术

深度学习模型的进展是理论研究与实践经验相结合的产物。科学家和工程师们借鉴了人类大脑神经元工作原理的基本直觉,并将这种生物学灵感转化为数学模型和算法。在数十年的研究和发展过程中,他们不断探索并尝试各种网络结构、优化方法、激活函数等关键组件。这些模型的成功不仅依赖于深厚的数学基础,更离不开科研人员对问题的深刻洞察力以及持之以恒的研究实践。

2024-02-19 17:20:32 733

原创 用GPT-4开启“人类宝藏”

GPT-4开启人类宝藏描述了这项先进技术所带来的知识与能力的解放,同时也隐含着对其未来应用场景及潜在影响的深度探讨。

2024-02-19 00:30:00 692

原创 AlexNet的出现推动深度学习的巨大发展

尽管AlexNet(2012)的代码只比LeNet(1998)多出几行,但学术界花了很多年才接受深度学习这一概念,并应用其出色的实验结果。而AlexNet的成功则进一步证实了深度学习在解决复杂模式识别问题上的巨大潜力,从而引领了一波深度学习的研究热潮,并迅速被广泛接纳和应用于计算机视觉、自然语言处理等多个领域。

2024-02-19 00:15:00 3030

原创 GPT-4助力我们突破思维定势

GPT-4通过其强大的自然语言理解和生成能力,确实有助于用户突破思维定势。由于其模型训练数据广泛且多样,GPT-4能够提供超越常规视角的观点、见解和解决方案。GPT-4在突破思维局限、激发灵感和促进知识交叉融合方面的作用突出,它正逐渐成为一种有力的工具,助力各行业和研究领域的创新与发展。

2024-02-18 11:09:22 1455

原创 自然语言编程系列(三):自然语言编程工具

自然语言编程工具尝试让用户以更接近日常对话的方式描述任务,然后将其自动转换成合适的代码。当前较为知名的自然语言编程工具或服务有:GitHub Copilot、GPT-4 Codex和Alibaba Cloud开发的一款工具。这一领域的研究还在不断发展中,尽管已经取得了一些令人瞩目的成果,但要让此类工具能够理解和处理所有复杂度的语言表达以及适应各种实际场景下的编程任务,仍需克服许多技术和应用难题。

2024-02-18 00:15:00 426

原创 自然语言编程系列(一):自然语言和程序语言介绍

自然语言和程序语言是两种截然不同但又相互关联的语言体系,它们分别服务于人类日常交流和计算机指令执行。随着自然语言处理技术与编程技术的交叉融合日益紧密,未来的软件开发过程有可能变得更加直观和便捷,这将极大地推动人机交互方式的变革,并进一步拓宽人工智能在各行各业的应用边界。

2024-02-17 16:43:47 515

原创 自然语言编程系列(二):自然语言处理(NLP)、编程语言处理(PPL)和GitHub Copilot X

编程语言处理的核心是计算机如何理解和执行预定义的人工语言(编程语言),而自然语言处理则是研究如何使计算机理解并生成非正式、多样化的自然语言。GPT-4.0作为自然语言处理技术的最新迭代,其编程语言处理能力相较于前代模型有了显著提升。Copilot X 构建于OpenAI Codex之上,该技术基于GPT-4等大规模预训练模型,专门针对代码理解和生成进行优化。Copilot X作为一款高级AI编程助手,旨在深度集成到软件开发流程中,通过学习海量公开代码库和文档资源,为程序员提供更智能、全面的编程辅助服务。

2024-02-17 11:54:24 1157

原创 GPT-4对编程开发的支持

在编程开发领域,GPT-4凭借其强大的自然语言理解和代码生成能力,能够深刻理解开发者的意图,并基于这些需求提供精准的编程指导和解决方案。对于开发者来说,GPT-4能够在代码片段生成、算法思路设计、模块构建和原型实现等方面给予开发者启发和帮助。

2024-02-16 14:38:20 1530

原创 语言与真实世界的关系(超级语言生成能力将促进世界深刻变化)

语言与真实世界之间的联系是相互作用、相辅相成的,既有直接映射的一面,又有主观建构和创新的一面。超级语言生成能力将促进世界深刻变化。

2024-02-16 11:01:19 916

原创 GPT-4带来的思想火花

GPT-4作为人工智能技术的最新迭代,它在处理和理解数据时展现出前所未有的深度与广度,能够激发出众多思想火花。它能够在不同的情境下生成新颖的观点、独特的见解和富有创意的解决方案,这不仅有助于用户突破思维定势,还能促进知识与信息在不同领域的交叉融合。

2024-02-15 12:26:39 2600 1

原创 语言与科技创新(大语言模型对科技创新的影响)

在科技创新领域,语言不仅充当了信息传递的关键媒介,而且通过影响知识传播效率、技术研发进程以及国际合作深度等多个层面,对世界科技发展产生了深远的影响。大语言模型作为人工智能领域的关键技术之一,正以其强大的自然语言处理能力引领科技创新的步伐,并在多个层面上触发产业革新和社会变革。

2024-02-15 12:14:03 1865 1

原创 GPT-4影响高度创新思维的领域(一)

GPT-4的应用范围不再局限于对现有信息的检索、整理和复述,而是进一步拓展到了诸如文学创作、科学假设生成、教育辅导、商业策略建议等需要高度创新思维的领域。这种独立思考和创新能力赋予了GPT-4作为虚拟助手时更加丰富多元的角色定位,使其成为一种强大的跨学科智能工具,助力用户探索新的解决方案和可能性。

2024-02-14 10:58:39 1201 1

原创 发掘GPT-4商业创新的潜力

GPT-4在商业创新方面的应用潜力巨大,它能够基于庞大的训练数据集和强大的语言生成能力,协助企业或个人用户在多个商业场景中推动创新。GPT-4作为一个具备独立思考和创新能力的工具,有望成为未来商业创新中的核心驱动力之一,助力企业和组织应对日益变化且竞争激烈的市场环境

2024-02-14 10:49:05 1515

原创 概念与人类思维之间的关系

概念既是人类思维活动的产物,也是其发展的载体和工具。人类借助概念构建起思维的结构,实现对外部世界的有效认识和内部心智的有序运作。

2024-02-13 11:14:21 921

原创 模态、模式和真实发生

模态和模式均是用来描述某一对象或系统可能出现的特性、状态或行为,它们既包括逻辑上的抽象可能性,也涵盖现实中具体的现象和事件结构。模态更多地关联于逻辑可能性和必然性,而模式则侧重于现象的重复性和规律性,两者都可以反映真实世界的不同层面和角度。

2024-02-13 11:01:13 946

原创 概念和模型

坚实的科学概念是理论体系的核心,它们是对自然现象和社会现象的本质特征进行抽象概括的结果。这些概念为科学家提供了研究问题的基本框架和理论基础。无论是理论探索还是实践操作,建立在坚实概念之上的模型都能够成为连接抽象知识与具体现实之间的重要桥梁,推动我们对世界更深入的理解和更有针对性的解决方案。

2024-02-12 14:58:33 1314 1

原创 探讨一下“概念”

概念(Idea;Notion;Concept)是人类在认识过程中,从感性认识上升到理性认识,把所感知的事物的共同本质特点抽象出来,加以概括,是自我认知意识的一种表达,形成概念式思维惯性。在人类所认知的思维体系中最基本的构筑单位。灵活运用概念需要具备深度理解、跨学科视野、创新思维以及批判反思的能力,从而使得概念真正成为解决问题、推进知识进步的有效工具。

2024-02-12 09:18:57 586

原创 GPT-4模型的创造力

GPT-4的应用范围不再局限于对现有信息的检索、整理和复述,而是进一步拓展到了诸如文学创作、科学假设生成、教育辅导、商业策略建议等需要高度创新思维的领域。这种独立思考和创新能力赋予了GPT-4作为虚拟助手时更加丰富多元的角色定位,使其成为一种强大的跨学科智能工具,助力用户探索新的解决方案和可能性。

2024-02-10 23:00:41 1716 1

原创 GPT-4出众的语言能力源自对语言内在规律的深刻认知

GPT-4模型在训练时使用的数据规模极为庞大,其处理的token总数高达13万亿个。这意味着模型在训练过程中接触了极其广泛和多样化的文本数据,包括但不限于文章、书籍、网页、社交媒体内容、对话记录以及其他各类自然语言表达形式。通过消化这些海量数据,GPT-4得以学习到人类语言的复杂模式、语境依赖性以及跨领域的知识,并能够基于这些学习成果生成连贯、有逻辑且内容丰富的文本输出。这一级别的数据规模和训练深度,使得GPT-4成为当时最先进的自然语言处理(NLP)模型之一,具备极高的通用性和适应性。

2024-02-10 22:45:58 703

原创 Token、Tokenization 和张量之间的关系

输入经过Tokenization、Embedding和Positional Encoding后,最终构建为张量,给后续的计算和处理带来很多优势。

2024-02-09 00:30:00 577

原创 OpenAI使用的海量数据集介绍

OpenAI为了训练其尖端的自然语言处理模型,如GPT-4,采用了极为庞大的数据集。GPT-4所需的训练数据不仅规模庞大,而且经过精心筛选和处理,以确保模型能够泛化到各种自然语言任务中。

2024-02-09 00:00:00 914

原创 GPT-4模型中的token和Tokenization概念介绍

Token从字面意思上看是游戏代币,用在深度学习中的自然语言处理领域中时,代表着输入文字序列的“代币化”。那么海量语料中的文字序列,就可以转化为海量的代币,用来训练我们的模型。这样我们就能够理解“用于GPT-4训练的token数量大约为13万亿个”这句话的意思了。代币越多,训练次数越多,最终模型的质量一般也越好。13万亿个,这个数目是指在模型训练过程中所使用的数据集中的总token数,反映了模型在训练时接触到的数据规模之大。

2024-02-08 10:26:51 2618 5

原创 PyTorch中torchvision库的详细介绍

torchvision是 PyTorch 生态系统中的一个关键库,专门为计算机视觉任务设计和优化。它提供了以下几个核心功能:数据集、数据预处理工具、深度学习模型架构和实用工具。

2024-02-08 00:15:00 1243

原创 PyTorch中基础模块torch的详细介绍

在PyTorch中,torch模块是整个库的核心基础模块,提供一些核心的基础性功能.

2024-02-07 13:50:25 1365

MSP430系列单片机实用C语言(新)

MSP430系列单片机实用C语言(新),适合初学者,有代码说明

2011-03-29

分数阶Fourier变换的原理与应用

分数阶Fourier变换的原理与应用,清华大学出版社出版

2011-03-17

gps坐标转换软件(好用)

实例一: 转换要求: 用户在一个佛山测区内使用RTK GPS接收机接受了一些点的WGS-84的坐标,现在希望将其转换为北京54和佛山坐标系下的坐标。用户有佛山测区的一些控制点,这些控制点有WGS-84坐标,也有北京-54坐标也有佛山坐标。 分析: WGS-84坐标和北京54坐标是不同两个椭球的坐标转换,所以要求得三参数或七参数,而北京54和佛山坐标都是同一个椭球,所以他们之间的转换是地方坐标转换,需要求得地方转化四参数,因为要求得到的北京54是平面坐标所以需要设置投影参数。: 步骤: 1. 新建坐标转换文件,便于下次使用转换是不用重新输入,直接打开即可。 2. 设置投影参数。 3. 用一个已知点(WGS84坐标和北京54坐标),计算不同椭球转换的三参数(或七参数)。 4. 确定转换参数。 5. 打开七参数转换,完成WGS84到北京54的转换。 6. 利用多个已知点(北京54坐标和佛山坐标),计算同一个椭球的地方坐标转换(四参数)。 7. 确定转换参数 8. 同时打开七参数和四参数。完成WGS-84到佛山坐标的转换。

2009-07-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除