川味——水煮鱼

     http://bbs.tianya.cn/post-96-631139-1.shtml 

被地沟油逼到忍无可忍,不嫌麻烦自做水煮鱼(水煮鱼家常做法)
    
    
    水煮鱼,盆大汤靓鱼鲜菜香,那是人人爱吃。近期被地沟油闹的人心惶惶,酷爱水煮鱼的俺们两口子实在馋出毛病来了。以前做过几次水煮鱼,每次都给麻烦得够呛,然而再麻烦也抵不过馋虫的诱惑,于是下定决心好好做一次水煮鱼止馋虫。
      
    先介绍原料:
      
    主料:1斤9两的新鲜鲈鱼一条(饭店里多用草鱼、鲤鱼)
      
    (选鲈鱼盖因上星期在北京跟我妹妹吃过一次豆花鲈鱼,鱼肉鲜嫩且无刺,回来后就惦记了好久,所以这次水煮鱼的原料买了鲈鱼。人为刀俎,我为鱼肉的样子不好过呀。罪过罪过)
  
    配料:豆芽、黄瓜(黄瓜在水煮鱼里主要作用是增鲜,用白菜或者莴笋也可以)
    
    
    
    
    佐料:辣椒约1两、花椒少许、葱姜蒜若干
      
    (辣椒及花椒的数量视个人口味,俺家不爱吃花椒,所以花椒较正宗川菜要少,另外辣椒品种不同辣的程度也不同,俺买的辣椒属于较辣的。
      
    拿不准量的朋友可参照盘子大小,这个是6寸盘,另外辣椒花椒可稍多放些,吃时觉得味重捞出就行了。)
    
    重要佐料:郫县豆瓣酱和剁椒
  
   介绍完这些HLL的主料配料佐料,就要开始介绍步骤了。
      
      第一步:处理鱼肉。
      
      鱼肉去骨(我连皮也去了)
    
    
      斜刀片成鱼片。放入淀粉、蛋清、盐、料酒及少许糖抓匀备用。
    
      鱼骨切段和鱼头放在旁边备用
      
      (好狰狞的鱼头啊)
  
  
      第二步:滑鱼片
      
      倒入约1斤花生油
      
      (我为了避免有生油味儿,是先将油烧热,然后关火让油慢慢冷下来,然后再加热)
      
      烧至油温在2-3成热,将鱼片倒入
      
      (油温这个要自己把握,油2-3成热时应不冒烟,鱼倒进去基本没有声音的)
      
      慢慢将鱼滑熟。
    
    
    
    
    
      滑好的鱼肉捞出备用。
        
      (好香)
  
      第三步,炒鱼头及煮汤
      
      锅内倒少许油,加入剁椒及郫县豆瓣酱翻炒,再加入葱姜蒜,直至炒香。
      
      (剁椒和郫县豆瓣酱,就算是在北方,在比较大的超市里都可以买到的)
    
    
    
    
    
     放入鱼骨、鱼头翻炒。
    
      加水,没过鱼头。煮啊煮啊,大火煮10分钟左右
      
      (如果没有剁椒及郫县豆瓣酱,现在的汤应该是乳白色)
      
      俺家没人吃鱼头,所以用漏勺将鱼头、鱼尾、葱姜蒜等捞出扔掉,鱼骨上还有肉扔了可惜,可以保留。
      
      喜欢吃鱼头的尽可以把这些好东东都留着。
    
    
    
    
    
    
      然后加入豆芽和黄瓜
      
      (请无视那片洋葱,是之前剩了很小一片,随手扔在里面的,反正也吃不出来)
      
      中火煮约3-5分钟,菜熟且入味后即可。
    
    
      煮好后连汤带菜倒入那个为水煮鱼买的“专用工具”不锈钢盆(哈哈哈哈),上面再放入滑好的鱼片。
  
      第四步:油烹辣椒
      
      自己家做菜,节约为上,原来滑鱼片的油3-4两,烧热倒入辣椒和花椒。注意:油别太热,5-6成就行,否则辣椒就焦了。
      
      (兹啦!香啊!)
    
    
    
    
      连油带辣椒花椒统统倒在原先已经红红的汤里,成品就大功告成!
      
      不得不说,用鲈鱼做的水煮鱼,刺少肉嫩,比草鱼好吃啊,哈哈。
  

智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值