合并元数据
如同ProtocolBuffer,Avro,Thrift一样,Parquet也是支持元数据合并的。用户可以在一开始就定义一个简单的元数据,然后随着业务需要,逐渐往元数据中添加更多的列。在这种情况下,用户可能会创建多个Parquet文件,有着多个不同的但是却互相兼容的元数据。Parquet数据源支持自动推断出这种情况,并且进行多个Parquet文件的元数据的合并。
因为元数据合并是一种相对耗时的操作,而且在大多数情况下不是一种必要的特性,从Spark 1.5.0版本开始,默认是关闭Parquet文件的自动合并元数据的特性的。可以通过以下两种方式开启Parquet数据源的自动合并元数据的特性:
1、读取Parquet文件时,将数据源的选项,mergeSchema,设置为true
2、使用SQLContext.setConf()方法,将spark.sql.parquet.mergeSchema参数设置为true
案例:合并学生的基本信息,和成绩信息的元数据
代码实例
Scala版本:
package com.etc
import org.apache.spark.sql.{SQLContext, SaveMode}
import org.apache.spark.{SparkConf, SparkContext}
/**
* author: fengze
* description:
* Parquet数据源之合并元数据
*/
object ParquetMergeSchema {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
.setAppName("ParquetMergeSchema")
.setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
//不用提前创建parquet文件
// 创建一个DataFrame,作为学生的基本信息,并写入一个parquet文件中
val studentsWithNameAge = Array(("leo", 23), ("jack", 25)).toSeq
val studentsWithNameAgeDF = sc.parallelize(studentsWithNameAge, 2).toDF("name", "age")
studentsWithNameAgeDF.save("F:\\Spark-SQL\\students.parquet", "parquet", SaveMode.Append)
// 创建第二个DataFrame,作为学生的成绩信息,并写入一个parquet文件中
val studentsWithNameGrade = Array(("marry", "A"), ("tom", "B")).toSeq
val studentsWithNameGradeDF = sc.parallelize(studentsWithNameGrade, 2).toDF("name", "grade")
studentsWithNameGradeDF.save("F:\\Spark-SQL\\students.parquet", "parquet", SaveMode.Append)
// 首先,第一个DataFrame和第二个DataFrame的元数据肯定是不一样的吧
// 一个是包含了name和age两个列,一个是包含了name和grade两个列
// 所以, 这里期望的是,读取出来的表数据,自动合并两个文件的元数据,出现三个列,name、age、grade
// 用mergeSchema的方式,读取students表中的数据,进行元数据的合并
//重点:sqlContext.read.option("mergeSchema", "true")
val students = sqlContext.read.option("mergeSchema", "true")
.parquet("F:\\Spark-SQL\\students.parquet")
//打印元数据结构信息
students.printSchema()
students.show()
}
}
复制代码
java版本:
package com.etc;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;
import java.sql.Array;
/**
* @author: fengze
* @description:
* Parquet数据源之合并元数据
*/
public class ParquetMergeSchemaJava {
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName("ParquetMergeSchemaJava")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
//创建第一个studentInfo1基本信息,写入一个parquet文件中
DataFrame studentInfo1 = sqlContext.read().format("json").load("F:\\studentInfo1.json");
studentInfo1.write().mode(SaveMode.Append).save("F:\\studentInfo.parquet");
//创建第两个studentInfo1基本信息,写入一个parquet文件中
DataFrame studentInfo2 = sqlContext.read().format("json").load("F:\\studentInfo2.json");
studentInfo2.write().mode(SaveMode.Append).save("F:\\studentInfo.parquet");
//开启Parquet数据源的自动合并元数据的特性
//重点:sqlContext.read.option("mergeSchema", "true")
DataFrame studentInfo = sqlContext.read().option("mergeSchema", "true")
.parquet("F:\\studentInfo.parquet");
//打印元数据结构信息
studentInfo.printSchema();
studentInfo.show();
}
}
复制代码