[2019.2.13]BZOJ4318 OSU!

我们记\(pw3_i\)表示前\(i\)个位置,结尾为\(i\)的最长全1子串的期望长度的立方。

如果我们钦定\(p_{n+1}=0\),那么答案\(=\sum_{i=1}^npw3_i\times(1-p_{i+1})\)。乘上\((1-p_{i+1})\)意思是这一位要在下一位为\(0\)的时候才有贡献。

设当前位置为\(i\)

这一位有\(p_i\)的概率为1。那么考虑如何从\(pw3_{i-1}\)转移到\(pw3_i\)

发现\((x+1)^3=x^3+3x^2+3x+1\)

我们记\(pw2_i\)表示前\(i\)个位置,结尾为\(i\)的最长全1子串的期望长度的平方,\(pw1_i\)表示前\(i\)个位置,结尾为\(i\)的最长全1子串的期望长度。

那么\(pw3_i=(pw3_{i-1}+3pw2_{i-1}+3pw1_{i-1}+1)\times p_i\)

然后我们还要转移\(pw2\)\(pw1\)

同理,\((x+1)^2=x^2+2x+1\)

所以\(pw2_i=(pw2_{i-1}+2pw1_{i-1}+1)\times p_i\)

剩下一个就很简单了,\(pw1_i=(pw1_{i-1}+1)\times p_i\)

做完了。

code:

#include<bits/stdc++.h>
using namespace std;
int n;
double p[100010],pw1[100010],pw2[100010],pw3[100010],ans;
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;++i)scanf("%lf",&p[i]);
    for(int i=1;i<=n;++i)pw1[i]=(pw1[i-1]+1)*p[i],pw2[i]=(pw2[i-1]+2*pw1[i-1]+1)*p[i],pw3[i]=(pw3[i-1]+3*pw2[i-1]+3*pw1[i-1]+1)*p[i],ans+=pw3[i]*(1-p[i+1]);
    printf("%.1lf",ans);
    return 0;
}

转载于:https://www.cnblogs.com/xryjr233/p/BZOJ4318.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值