学点算法搞安全之HMM(下篇)

                             学点算法搞安全之HMM(下篇)

 

 

前言

上篇我们介绍了HMM的基本原理以及常见的基于参数的异常检测实现,这次我们换个思路,把机器当一个刚入行的白帽子,我们训练他学会XSS的攻击语法,然后再让机器从访问日志中寻找符合攻击语法的疑似攻击日志。




通过词法分割,可以把攻击载荷序列化成观察序列,举例如下:


词集/词袋模型


词集和词袋模型是机器学习中非常常用的一个数据处理模型,它们用于特征化字符串型数据。一般思路是将样本分词后,统计每个词的频率,即词频,根据需要选择全部或者部分词作为哈希表键值,并依次对该哈希表编号,这样就可以使用该哈希表对字符串进行编码。

词集模型:单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个

词袋模型:如果一个单词在文档中出现不止一次,并统计其出现的次数


本章使用词集模型即可。


假设存在如下数据集合:

dataset = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]


首先生成词汇表:

vocabSet = set()

for doc in dataset:

vocabSet |= set(doc)

vocabList = list(vocabSet)


根据词汇表生成词集:

# 词集模型

SOW = []

for doc in dataset:

vec = [0]*len(vocabList)

for i, word in enumerate(vocabList):

if word in doc:

vec[i] = 1

SOW.append(doc)


简化后的词集模型的核心代码如下:

fredist = nltk.FreqDist(tokens_list) # 单文件词频

keys=fredist.keys()

keys=keys[:max] #只提取前N个频发使用的单词 其余泛化成0

for localkey in keys: # 获取统计后的不重复词集

if localkey in wordbag.keys(): # 判断该词是否已在词集中

continue

else:

wordbag[localkey] = index_wordbag

index_wordbag += 1


数据处理与特征提取

常见的XSS攻击载荷列举如下:

<script>alert(‘XSS’)</script>

%3cscript%3ealert(‘XSS’)%3c/script%3e

%22%3e%3cscript%3ealert(‘XSS’)%3c/script%3e

<IMG SRC=”javascript:alert(‘XSS’);”>

<IMG SRC=javascript:alert(“XSS”)>

<IMG SRC=javascript:alert(‘XSS’)>

<img src=xss οnerrοr=alert(1)>

<IMG “”"><SCRIPT>alert(“XSS”)</SCRIPT>”>

<IMG SRC=javascript:alert(String.fromCharCode(88,83,83))>

<IMG SRC=”jav ascript:alert(‘XSS’);”>

<IMG SRC=”jav ascript:alert(‘XSS’);”>

<BODY BACKGROUND=”javascript:alert(‘XSS’)”>

<BODY ONLOAD=alert(‘XSS’)>


需要支持的词法切分原则为:

单双引号包含的内容 ‘XSS’

http/https链接 http://xi.baidu.com/xss.js

<>标签 <script>

<>标签开头 <BODY

属性标签 ONLOAD=

<>标签结尾 >

函数体 “javascript:alert(‘XSS’);”


字符数字标量 代码实现举例如下:

tokens_pattern = r”’(?x)

“[^"]+”

|http://\S+

|</\w+>

|<\w+>

|<\w+

|\w+=

|>

|\w+\([^<]+\) #函数 比如alert(String.fromCharCode(88,83,83))

|\w+

”’

words=nltk.regexp_tokenize(line, tokens_pattern)


另外,为了减少向量空间,需要把数字和字符以及超链接范化,具体原则为:

#数字常量替换成8

line, number = re.subn(r’\d+’, “8″, line)

#ulr日换成http://u

line, number = re.subn(r’(http|https)://[a-zA-Z0-9\.@&/#!#\?]+’, “http://u“, line)

#干掉注释

line, number = re.subn(r’\/\*.?\*\/’, “”, line)


范化后分词效果示例为:

#原始参数值:”><img src=x οnerrοr=prompt(0)>)


#分词后:

['>', '<img', 'src=', 'x', 'οnerrοr=', 'prompt(8)', '>']


#原始参数值:<iframe src=”x-javascript:alert(document.domain);”></iframe>)


#分词后:

['<iframe', 'src=', '"x-javascript:alert(document.domain);"', '>', '</iframe>']


#原始参数值:<marquee><h1>XSS by xss</h1></marquee> )


#分词后:

['<marquee>', '<h8>', 'XSS', 'by', 'xss', '</h8>', '</marquee>']


#原始参数值:<script>-=alert;-(1)</script> “οnmοuseοver=”confirm(document.domain);”" </script>)


#分词后:

['<script>', 'alert', '8', '</script>', '"οnmοuseοver="', 'confirm(document.domain)', '</script>']


#原始参数值:<script>alert(2)</script> “><img src=x οnerrοr=prompt(document.domain)>)


#分词后:

['<script>', 'alert(8)', '</script>', '>', '<img', 'src=', 'x', 'οnerrοr=', 'prompt(document.domain)', '>']


结合词集模型,完整的流程举例如下:


训练模型


将范化后的向量X以及对应的长度矩阵X_lens输入即可,需要X_lens的原因是参数样本的长度可能不一致,所以需要单独输入。

remodel = hmm.GaussianHMM(n_components=3, covariance_type=”full”, n_iter=100)

remodel.fit(X,X_lens)


验证模型

整个系统运行过程如下:




验证阶段利用训练出来的HMM模型,输入观察序列获取概率,从而判断观察序列的合法性,训练样本是1000条典型的XSS攻击日志,通过分词、计算词集,提炼出200个特征,全部样本就用这200个特征进行编码并序列化,使用20000条正常日志和20000条XSS攻击识别(类似JSFUCK这类编码的暂时不支持),准确率达到90%以上,其中验证环节的核心代码如下:

with open(filename) as f:

for line in f:

line = line.strip(‘\n’)

line = urllib.unquote(line)

h = HTMLParser.HTMLParser()

line = h.unescape(line)

if len(line) >= MIN_LEN:

line, number = re.subn(r’\d+’, “8″, line)

line, number = re.subn(r’(http|https)://[a-zA-Z0-9\.@&/#!#\?:]+’, “http://u“, line)

line, number = re.subn(r’\/\*.?\*\/’, “”, line)

words = do_str(line)

vers = []

for word in words:

if word in wordbag.keys():

vers.append([wordbag[word]])

else:

vers.append([-1])

np_vers = np.array(vers)

pro = remodel.score(np_vers)

if pro >= T:

print “SCORE:(%d) XSS_URL:(%s) ” % (pro,line)



本文来自合作伙伴“阿里聚安全”,发表于2017年05月11日 11:33.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值