前言
上篇我们介绍了HMM的基本原理以及常见的基于参数的异常检测实现,这次我们换个思路,把机器当一个刚入行的白帽子,我们训练他学会XSS的攻击语法,然后再让机器从访问日志中寻找符合攻击语法的疑似攻击日志。
通过词法分割,可以把攻击载荷序列化成观察序列,举例如下:
词集/词袋模型
词集和词袋模型是机器学习中非常常用的一个数据处理模型,它们用于特征化字符串型数据。一般思路是将样本分词后,统计每个词的频率,即词频,根据需要选择全部或者部分词作为哈希表键值,并依次对该哈希表编号,这样就可以使用该哈希表对字符串进行编码。
词集模型:单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个
词袋模型:如果一个单词在文档中出现不止一次,并统计其出现的次数
本章使用词集模型即可。
假设存在如下数据集合:
dataset = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
首先生成词汇表:
vocabSet = set()
for doc in dataset:
vocabSet |= set(doc)
vocabList = list(vocabSet)
根据词汇表生成词集:
# 词集模型
SOW = []
for doc in dataset:
vec = [0]*len(vocabList)
for i, word in enumerate(vocabList):
if word in doc:
vec[i] = 1
SOW.append(doc)
简化后的词集模型的核心代码如下:
fredist = nltk.FreqDist(tokens_list) # 单文件词频
keys=fredist.keys()
keys=keys[:max] #只提取前N个频发使用的单词 其余泛化成0
for localkey in keys: # 获取统计后的不重复词集
if localkey in wordbag.keys(): # 判断该词是否已在词集中
continue
else:
wordbag[localkey] = index_wordbag
index_wordbag += 1
数据处理与特征提取
常见的XSS攻击载荷列举如下:
<script>alert(‘XSS’)</script>
%3cscript%3ealert(‘XSS’)%3c/script%3e
%22%3e%3cscript%3ealert(‘XSS’)%3c/script%3e
<IMG SRC=”javascript:alert(‘XSS’);”>
<IMG SRC=javascript:alert(“XSS”)>
<IMG SRC=javascript:alert(‘XSS’)>
<img src=xss οnerrοr=alert(1)>
<IMG “”"><SCRIPT>alert(“XSS”)</SCRIPT>”>
<IMG SRC=javascript:alert(String.fromCharCode(88,83,83))>
<IMG SRC=”jav ascript:alert(‘XSS’);”>
<IMG SRC=”jav ascript:alert(‘XSS’);”>
<BODY BACKGROUND=”javascript:alert(‘XSS’)”>
<BODY ONLOAD=alert(‘XSS’)>
需要支持的词法切分原则为:
单双引号包含的内容 ‘XSS’
http/https链接 http://xi.baidu.com/xss.js
<>标签 <script>
<>标签开头 <BODY
属性标签 ONLOAD=
<>标签结尾 >
函数体 “javascript:alert(‘XSS’);”
字符数字标量 代码实现举例如下:
tokens_pattern = r”’(?x)
“[^"]+”
|http://\S+
|</\w+>
|<\w+>
|<\w+
|\w+=
|>
|\w+\([^<]+\) #函数 比如alert(String.fromCharCode(88,83,83))
|\w+
”’
words=nltk.regexp_tokenize(line, tokens_pattern)
另外,为了减少向量空间,需要把数字和字符以及超链接范化,具体原则为:
#数字常量替换成8
line, number = re.subn(r’\d+’, “8″, line)
#ulr日换成http://u
line, number = re.subn(r’(http|https)://[a-zA-Z0-9\.@&/#!#\?]+’, “http://u“, line)
#干掉注释
line, number = re.subn(r’\/\*.?\*\/’, “”, line)
范化后分词效果示例为:
#原始参数值:”><img src=x οnerrοr=prompt(0)>)
#分词后:
['>', '<img', 'src=', 'x', 'οnerrοr=', 'prompt(8)', '>']
#原始参数值:<iframe src=”x-javascript:alert(document.domain);”></iframe>)
#分词后:
['<iframe', 'src=', '"x-javascript:alert(document.domain);"', '>', '</iframe>']
#原始参数值:<marquee><h1>XSS by xss</h1></marquee> )
#分词后:
['<marquee>', '<h8>', 'XSS', 'by', 'xss', '</h8>', '</marquee>']
#原始参数值:<script>-=alert;-(1)</script> “οnmοuseοver=”confirm(document.domain);”" </script>)
#分词后:
['<script>', 'alert', '8', '</script>', '"οnmοuseοver="', 'confirm(document.domain)', '</script>']
#原始参数值:<script>alert(2)</script> “><img src=x οnerrοr=prompt(document.domain)>)
#分词后:
['<script>', 'alert(8)', '</script>', '>', '<img', 'src=', 'x', 'οnerrοr=', 'prompt(document.domain)', '>']
结合词集模型,完整的流程举例如下:
训练模型
将范化后的向量X以及对应的长度矩阵X_lens输入即可,需要X_lens的原因是参数样本的长度可能不一致,所以需要单独输入。
remodel = hmm.GaussianHMM(n_components=3, covariance_type=”full”, n_iter=100)
remodel.fit(X,X_lens)
验证模型
整个系统运行过程如下:
验证阶段利用训练出来的HMM模型,输入观察序列获取概率,从而判断观察序列的合法性,训练样本是1000条典型的XSS攻击日志,通过分词、计算词集,提炼出200个特征,全部样本就用这200个特征进行编码并序列化,使用20000条正常日志和20000条XSS攻击识别(类似JSFUCK这类编码的暂时不支持),准确率达到90%以上,其中验证环节的核心代码如下:
with open(filename) as f:
for line in f:
line = line.strip(‘\n’)
line = urllib.unquote(line)
h = HTMLParser.HTMLParser()
line = h.unescape(line)
if len(line) >= MIN_LEN:
line, number = re.subn(r’\d+’, “8″, line)
line, number = re.subn(r’(http|https)://[a-zA-Z0-9\.@&/#!#\?:]+’, “http://u“, line)
line, number = re.subn(r’\/\*.?\*\/’, “”, line)
words = do_str(line)
vers = []
for word in words:
if word in wordbag.keys():
vers.append([wordbag[word]])
else:
vers.append([-1])
np_vers = np.array(vers)
pro = remodel.score(np_vers)
if pro >= T:
print “SCORE:(%d) XSS_URL:(%s) ” % (pro,line)
本文来自合作伙伴“阿里聚安全”,发表于2017年05月11日 11:33.