在我们内部开发使用的一个工具中,我们需要几乎从 0 开始实现一个高效的二维图像渲染引擎。比较幸运的是,我们只需要画直线、圆以及矩形,其中比较复杂的是画直线和圆。画直线和圆已经有非常多的成熟的算法了,我们用的是Bresenham的算法。
计算机是如何画直线的?简单来说,如下图所示,真实的直线是连续的,但我们的计算机显示的精度有限,不可能真正显示连续的直线,于是我们用一系列离散化后的点(像素)来近似表现这条直线。
(上图来自于互联网络,《计算机图形学的概念与方法》柳朝阳,郑州大学数学系)
接下来的问题就是如何尽可能高效地找到这些离散的点,Bresenham直线算法就是一个非常不错的算法。
Bresenham直线算法是用来描绘由两点所决定的直线的算法,它会算出一条线段在 n 维光栅上最接近的点。这个算法只会用到较为快速的整数加法、减法和位元移位,常用于绘制电脑画面中的直线。是计算机图形学中最先发展出来的算法。
(引自wiki百科布雷森漢姆直線演算法)
这个算法的流程图如下:
可以看到,算法其实只考虑了斜率在 0 ~ 1 之间的直线,也就是与 x 轴夹角在 0 度到 45 度的直线。只要解决了这类直线的画法,其它角度的直线的绘制全部可以通过简单的坐标变换来实现。
下面是一个C语言实现版本。
// 交换整数 a 、b 的值 inline void swap_int(int *a, int *b) { *a ^= *b; *b ^= *a; *a ^= *b; } // Bresenham's line algorithm void draw_line(IMAGE *img, int x1, int y1, int x2, int y2, unsigned long c) { // 参数 c 为颜色值 int dx = abs(x2 - x1), dy = abs(y2 - y1), yy = 0; if (dx < dy) { yy = 1; swap_int(&x1, &y1); swap_int(&x2, &y2); swap_int(&dx, &dy); } int ix = (x2 - x1) > 0 ? 1 : -1, iy = (y2 - y1) > 0 ? 1 : -1, cx = x1, cy = y1, n2dy = dy * 2, n2dydx = (dy - dx) * 2, d = dy * 2 - dx; if (yy) { // 如果直线与 x 轴的夹角大于 45 度 while (cx != x2) { if (d < 0) { d += n2dy; } else { cy += iy; d += n2dydx; } putpixel(img, cy, cx, c); cx += ix; } } else { // 如果直线与 x 轴的夹角小于 45 度 while (cx != x2) { if (d < 0) { d += n2dy; } else { cy += iy; d += n2dydx; } putpixel(img, cx, cy, c); cx += ix; } } }
可以看到,在画线的循环中,这个算法只用到了整数的加法,所以可以非常的高效。
接下来,我们再来看一看Bresenham画圆算法。
Bresenham画圆算法又称中点画圆算法,与Bresenham 直线算法一样,其基本的方法是利用判别变量来判断选择最近的像素点,判别变量的数值仅仅用一些加、减和移位运算就可以计算出来。为了简便起见,考虑一个圆 心在坐标原点的圆,而且只计算八分圆周上的点,其余圆周上的点利用对称性就可得到。
为什么只计算八分圆周上的点就可以了呢?和上面的直线算法类似,圆也有一个“八对称性”,如下图所示。
显然,我们只需要知道了圆上的一个点的坐标 (x, y) ,利用八对称性,我们马上就能得到另外七个对称点的坐标。
和直线算法类似,Bresenham画圆算法也是用一系列离散的点来近似描述一个圆,如下图。
(上图来自于互联网络,《计算机图形学的概念与方法》柳朝阳,郑州大学数学系)
Bresenham画圆算法的流程图如下。
可以看到,与画线算法相比,画圆的循环中用到了整数的乘法,相对复杂了一些。
下面是一个C语言实现版本。
// 八对称性 inline void _draw_circle_8(IMAGE *img, int xc, int yc, int x, int y, unsigned long c) { // 参数 c 为颜色值 putpixel(img, xc + x, yc + y, c); putpixel(img, xc - x, yc + y, c); putpixel(img, xc + x, yc - y, c); putpixel(img, xc - x, yc - y, c); putpixel(img, xc + y, yc + x, c); putpixel(img, xc - y, yc + x, c); putpixel(img, xc + y, yc - x, c); putpixel(img, xc - y, yc - x, c); } //Bresenham's circle algorithm void draw_circle(IMAGE *img, int xc, int yc, int r, int fill, unsigned long c) { // (xc, yc) 为圆心,r 为半径 // fill 为是否填充 // c 为颜色值 // 如果圆在图片可见区域外,直接退出 if (xc + r < 0 || xc - r >= img->w || yc + r < 0 || yc - r >= img->h) return; int x = 0, y = r, yi, d; d = 3 - 2 * r; if (fill) { // 如果填充(画实心圆) while (x <= y) { for (yi = x; yi <= y; yi ++) _draw_circle_8(img, xc, yc, x, yi, c); if (d < 0) { d = d + 4 * x + 6; } else { d = d + 4 * (x - y) + 10; y --; } x++; } } else { // 如果不填充(画空心圆) while (x <= y) { _draw_circle_8(img, xc, yc, x, y, c); if (d < 0) { d = d + 4 * x + 6; } else { d = d + 4 * (x - y) + 10; y --; } x ++; } } }
可以看到,Bresenham画圆算法(中点圆算法)的实现也非常简单。在另一个项目中,我还有一个 Python 实现的版本,不过那段代码和其余部分结合得比较紧,有点难抠,这次就不贴出来了。