问题链接:POJ NOI0113-03 八进制小数。
原题出处:PKU2765 八进制小数。
-
总时间限制:
- 1000ms 内存限制:
- 65536kB
-
描述
-
八进制有限小数均可以用十进制有限小数精确地表示。比如,八进制里面的0.75等于十进制里面的0.963125 (7/8 + 5/64)。所有小数点后位数为n的八进制小数都可以表示成小数点后位数不多于3n的十进制小数。
你的任务是写一个程序,把(0,1)之间的八进制小数转化成十进制小数。
输入
- 一行,包含一个八进制小数。每个小数的形式是0.d1d2d3 ... dk,这里di是八进制数0...7,dk不等于0,而且已知0 < k < 15。 输出
-
输入如下形式的一行
0.d1d2d3...dk [8] = 0.D1D2D3...Dm [10]
这里左边是输入的八进制小数,右边是相等的十进制小数。输出的小数末尾不能有0,也就是说Dm不等于0。注意空格位置。
样例输入
-
0.75
样例输出
-
0.75 [8] = 0.953125 [10]
来源
- 翻译自 Southern African 2001 的试题
问题分析
这是一个小数部分进制转换问题,是一种套路,需要根据进制原理进行计算。
有关进制转换,分为两种情况,一是整数进制转换,二是小数进制转换。一个数如果既有整数又有小数,那么要进行进制转换,则需要分别转换然后在合起来。整数进制转换可以参照函数itoa()的原理实现。
程序说明
(略)。
AC的C++语言程序:
/* Uvalive2245 POJ1131 HDU1376 ZOJ1086 Octal Fractions */
#include <iostream>
#include <cstring>
using namespace std;
const int BASE10 = 10;
const int BASE8 = 8;
const int MAXN = 1024;
char s[MAXN];
int ans[MAXN];
int main(void)
{
int len, digit, t, j, k;
while(cin >> s) {
memset(ans, 0, sizeof(ans));
t = 0;
len = strlen(s);
for(int i=len-1; i>1; i--) {
digit = s[i] - '0';
j = 0;
k = 0;
while(j<t || digit) {
digit = digit * BASE10 + ans[j++];
ans[k++] = digit / BASE8;
digit %= BASE8;
}
t = k;
}
cout<< s << " [" << BASE8 << "] = 0." ;
for(int i=0; i<t; i++)
cout << ans[i];
cout << " [" << BASE10 << "]" << endl;
}
return 0;
}