问题描述:
给定两个序列 X=<x1, x2, ..., xm>, Y<y1, y2, ..., yn>,求X和Y长度最长的公共子串。(子串中的字符要求连续)
这道题和最长公共子序列(Longest common subsequence)很像,也可以用动态规划定义。公式如下:
这里c[i,j]表示以Xi,Yj结尾的最长公共子串的长度。
程序实现:
int longestCommonSubstring(string x, string y) { int m = x.length(); int n = y.length(); vector< vector<int> > c(m+1, vector<int>(n+1)); for (int i = 0; i <= m; ++i) c[i][0] = 0; for (int j = 1; j <= n; ++j) c[0][j] = 0; int len = 0; for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (x[i-1] == y[j-1]) { c[i][j] = c[i-1][j-1] + 1; if (c[i][j] > len) len = c[i][j]; else c[i][j] = 0; } } return len; }
reference:
算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
华为OJ2011-最长公共子串