今天是pandas数据处理专题第三篇文章,我们来聊聊DataFrame中的索引。
上篇文章当中我们简单介绍了一下DataFrame这个数据结构的一些常见的用法,从整体上大概了解了一下这个数据结构。今天这一篇我们将会深入其中索引相关的应用方法,了解一下DataFrame的索引机制和使用方法。
数据准备
上一篇文章当中我们了解了DataFrame可以看成是一系列Series组合的dict,所以我们想要查询表中的某一列,也就是查询某一个Series,我们只需要像是dict一样传入key值就可以查找了。但是,如果我们想要查找某一行应该怎么办?难道手动去遍历每一列么?这显然是不现实的。
所以DataFrame当中也为我们封装了现成的行索引的方法,行索引的方法一共有两个,分别是loc,iloc。这两种方法都可以查询某一行,只是查询的参数不同,本质上没有高下之分,大家可以自由选择。
首先,我们还是用上次的方法来创建一个DataFrame用来测试:
data = {'name': ['Bob', 'Alice', 'Cindy', 'Justin', 'Jack'], 'score': [199, 299, 322, 212, 311], 'gender': ['M', 'F', 'F', 'M', 'M']}
df = pd.DataFrame(data)