dataframe的索引遍历_pandas | 如何在DataFrame中通过索引高效获取数据?

本文详细介绍了Pandas DataFrame中的loc和iloc两种行索引方法,用于高效获取数据。loc根据行索引(index)查询,支持切片和二维索引,而iloc则基于行号进行查询。此外,还介绍了使用逻辑表达式进行数据筛选的操作。理解并熟练掌握这些方法对数据处理至关重要。
摘要由CSDN通过智能技术生成

今天是pandas数据处理专题第三篇文章,我们来聊聊DataFrame中的索引。

上篇文章当中我们简单介绍了一下DataFrame这个数据结构的一些常见的用法,从整体上大概了解了一下这个数据结构。今天这一篇我们将会深入其中索引相关的应用方法,了解一下DataFrame的索引机制和使用方法。

数据准备

上一篇文章当中我们了解了DataFrame可以看成是一系列Series组合的dict,所以我们想要查询表中的某一列,也就是查询某一个Series,我们只需要像是dict一样传入key值就可以查找了。但是,如果我们想要查找某一行应该怎么办?难道手动去遍历每一列么?这显然是不现实的。

所以DataFrame当中也为我们封装了现成的行索引的方法,行索引的方法一共有两个,分别是loc,iloc。这两种方法都可以查询某一行,只是查询的参数不同,本质上没有高下之分,大家可以自由选择。

首先,我们还是用上次的方法来创建一个DataFrame用来测试:

data = {'name': ['Bob', 'Alice', 'Cindy', 'Justin', 'Jack'], 'score': [199, 299, 322, 212, 311], 'gender': ['M', 'F', 'F', 'M', 'M']}

df = pd.DataFrame(data)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值