笔记: WWW04-QoS computation and policing in dynamic web service selection

Y Liu, AH Ngu, LZ Zeng. Qos computation and policing in dynamic web service selection, WWW Alt.'04: Proc. of 13th Int. WWW Conf. on Alternate track papers & posters, 2004, pp. 66–73.
第一作者Yutu Liu, DBLP上显示就这么一篇, 其他地方(包括EI)里也搜不到更多关于这个作者的信息. Zeng LZ是本文的第三作者.

1. 本文提出了一套"open, fair and dynamic QoS computation model", 针对的是对单个Web Service进行QoS评估, 而不考虑Web Service Composition的情景(不解决使WS组合达到全局QoS最优的问题).

2. 一般来说Execution Price是指调用该WS需要支付的价格, 而跟这个WS具体做什么没有关系; 但是(S2.1)中对于Execution Price的介绍, 好像把Execution Price当成某些WS在执行时需要支付的价格(比如购买一张票或支付电话费). 我觉得(S2.1)这样描述是不恰当的.

3. 本文创新点(以下三点是作者概况的创新点)(S1)

(1) Extensible QoS Model
包括generic与domain specific criteria.
我觉得这个"Extensible"有点虚, WS的QoS种类很多, 如果涉及到具体的domain, 更是数不胜数. 本文介绍了3个generic quality criteria(Execution price, Execution duration, Reputation)和3个business related criteria(Transaction, Compensation rate, Penalty Rate), 并以这些QoS为例说明QoS评估方法.
评估的方法跟具体涉及哪些QoS关系不大, 因此QoS被称为"Extensible".
(2) 在评估QoS时, 可基于用户的preference
具体体现在公式(10)的加权相加中, 这个"权重"就体现了用户的preference
(3) Fair & Open QoS computation
可以从三种渠道获得QoS属性信息
a. 由provider publish(比如价格)
b. 用户monitoring (比如execution duration)
c. 基于用户的feedback (比如reputation)

这些创新点现在来看算都很普通, 能够发表在www上, 可能是作者提出的时间比较早的原因吧.

4. WS QoS评估方法: QoS的二次正则化, 加权相加.(S2.2)

这一节技术难度不大, 但是感觉有点繁.

第一次正则化是为了去单位化, 并将"decreasing measure"统一转化成"increasing measure"(值越高越有价值).
这里采用了一种与[Zeng LZ03]不同的方法
1) 对每一种属性, 设定了一个最高值
2) 使用平均值来作为正则化的基准; QoS值为平均值时, 正则化以后是1; 正则化以后的值越高, 越有价值.
问题: (S2.2)中Example1, 经过第一次normalization后, 文中给出的数据是
(1.3, 1.0, 0.462, 0.769, 0.64, 0.7, 0.8894,
0.8134, 1.0, 1.538, 1.23, 3.0, 1.75, 1.111)
我计算出来的是
(1.3, 1.0, 0.462, 0.769, 0.60, 0.7, 0.9984,
0.8125, 1.0, 1.538, 1.23, 3.0, 1.75, 1.111)
有3个数据不一样: 0.64->0.60, 0.8894->0.9984, 0.8134->0.8125

纳闷, 我应该没算错, 这种级别的会议论文应该也不会有这种低级错误啊?

需要第二次正则化, 是因为作者提到了一个"quality group"的概念, 通过矩阵乘法, 将一些属性合并成一个属性, 然后再将这些属性正则化(方法同第一次正则化时采用的方法), 最后加权相加得到WS的QoS Score. 我有疑惑, 经过这样两次正则化后, 最后的属性及其数值对应的含义已经很不直观了, 这些新属性具有多大的实用性呢? 引入"quality group"的概念真的很有必要吗?

转载于:https://www.cnblogs.com/yuquanlaobo/archive/2009/02/26/1398541.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值