你看见的我
码龄6年
关注
提问 私信
  • 博客:88,078
    88,078
    总访问量
  • 38
    原创
  • 848,889
    排名
  • 99
    粉丝
  • 0
    铁粉

个人简介:我就在这里,你呢?

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:福建省
  • 加入CSDN时间: 2018-05-28
博客简介:

qq_42328228的博客

查看详细资料
个人成就
  • 获得131次点赞
  • 内容获得73次评论
  • 获得508次收藏
创作历程
  • 1篇
    2023年
  • 1篇
    2022年
  • 14篇
    2021年
  • 23篇
    2020年
成就勋章
TA的专栏
  • 深度学习
    10篇
  • 安全学习
    14篇
  • 技巧学习
    2篇
  • 科研视野
    4篇
  • 联邦学习
    9篇
  • 机器学习
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络pytorch图像处理分类
  • 网络空间安全
    安全架构
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

从0到1实现神经网络

从0到1实现神经网络
转载
发布博客 2023.02.02 ·
205 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

(阅读笔记)ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

ABY引言基础知识秘密共享类型算术共享布尔共享姚式共享ABY框架代码在这里引言为了克服对有效函数表示的依赖并提高效率,一些工作将基于同态加密的安全计算协议与姚氏混淆电路结合,使用同态加密评估算术电路,例如加法和乘法运算,使用姚氏电路评估布尔电路,例如比较运算,研究结果表明,使用混合协议方法可以产生比仅使用单个协议更好的性能。然而,同态加密和姚氏电路协议之间转换的成本相对昂贵,并且同态加密的性能对着安全参数的增加而变差,因此混合协议仅比使用单一协议实现了相对较小的改进。作者提出了ABY框架,支持三种秘
原创
发布博客 2022.05.22 ·
3020 阅读 ·
12 点赞 ·
0 评论 ·
25 收藏

(阅读笔记)CoFF: Cooperative Spatial Feature Fusion for 3D Object Detection on Autonomous Vehicles

CoFF动机和贡献F-Cooper融合特征图的检测结果缺陷示例CoFFInformation-based Spatial Feature FusionFeature Enhancement动机和贡献车辆合作感知可以扩大单个车辆的感知视野和增强感知能力。直接共享原始点云数据产生的通信量,在当下的网络通信条件下是不实际的。相比于原始点云共享和融合,体素特征(或空间特征)融合可以达到相近的检测效果,且通信量较小。点云特征融合工作(F-Cooper)忽略了待融合特征图之间的语义信息差异,直接采用maxo
原创
发布博客 2021.09.16 ·
518 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

(阅读笔记)Low-Latency High-Level Data Sharing for Connected and Autonomous Vehicular Networks

检测结果共享动机和贡献L3数据共享协议高级数据共享低延迟数据共享数据聚合过程动机和贡献动机:通过与附近车辆和路边基础设施共享感知结果,车辆可以极大地增强对周围环境的感知,从而提高决策能力。贡献:提出了一种低延迟、高级(L3)数据共享协议,车辆的目标检测结果用感知矩阵表示,,便于车辆之间利用捕获效果进行快速信息共享。挑战:仅依靠自身传感器的车辆可能发生检测错误;障碍物阻挡车辆视线;带有详细标记信息(被检测物体的信息应该包括什么时候,什么地方,什么类型的物体被什么车辆上的什么传感器检测到,以及这个物体
原创
发布博客 2021.08.31 ·
279 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

(阅读笔记)F-Cooper: Feature based Cooperative Perception for Autonomous Vehicle Edge Computing System Us

F-Cooper动机和贡献F-Cooper动机和贡献动机:多车辆联合感知可以增强车辆的的检测能力以及扩展车辆的感知范围;原始点云数据融合需要占用大量的通信开销,难以满足实际的时延需求;贡献:压缩共享的数据尺寸,提出特征融合方法,包含体素特征融合VFF和空间特征融合SFF;可以部署在车内或路边边缘系统。【融合特征图(而不是原始数据)不仅能解决隐私问题,还能大大降低网络带宽需求。】F-Cooper体素特征融合VFF:非空体素编码为128维特征向量,相同位置的体素特征向量采用maxout方法进行
原创
发布博客 2021.08.30 ·
872 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

(阅读笔记)Cooper: Cooperative Perception for Connected Autonomous Vehicles based on 3D Point Clouds

Cooper动机和贡献Cooper动机和贡献动机:单个车辆的检测精度(由于障碍物遮挡等)和感知范围(由于传感器性能等)问题;贡献:原始点云数据的融合;Cooper点云数据融合:发送车辆与接收车辆的相对位置校准;旋转角度对齐;点云目标检测:采用VoxelNet网络(VFE;Spare CNN;RPN)...
原创
发布博客 2021.08.30 ·
525 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

(阅读笔记)VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection

VoxelNet动机和贡献VoxelNet网络动机和贡献动机(1)点云特性:密度不均匀和不规则性(2)人工特征工程:具有场景局限性,不能学习特征不变性,复杂场景(自主导航)收效甚微;(3)直接消耗点云的工作:PointNet和PointNet++直接学习稀疏点云特征,但实验是处理的1k点的点云,实际点云密度远远大于这个,将导致巨额计算和内存开销。【研究方向:人工特征(鸟瞰投影)–>机器学习特征(体素网格特征)】贡献(1)提出了一种端到端可训练的基于点云的三维检测深度架构Voxe
原创
发布博客 2021.08.30 ·
190 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

(阅读笔记)PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud

PointRCNN一、动机和贡献二、PointRCNN模型1) 通过点云分割自下而上生成3D提案2)点云区域池化3)规范3D边框的细调参考文献一、动机和贡献动机(1)从鸟瞰投影、Front投影和球面投影,或从RGB图像生成目标边界框建议,在量化过程中会遭受信息损失,我们直接从原始点云自下而上生成3D边界框建议;(2)PointNet和PointNet++的性能严重依赖于二维检测性能,不能利用三维信息的优势来生成鲁棒的边界框建议。(3)与二维图像中的目标检测不同,自动驾驶场景中的三维目标是自然、良
原创
发布博客 2021.08.29 ·
604 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

(阅读笔记)PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

PointNet++一、动机和贡献二、PointNet++模型一、动机和贡献点云深度模型的现有工作①体素编码;②将点云映射至平面投影;③人工特征工程;④直接消耗点云(PointNet)。PointNet的局限性:PointNet对于场景的分割效果十分一般,由于暴力地将所有点最大池化为全局特征,没有学习到局部点与点之间的关系;作者在PointNet++中主要借鉴了CNN的多层感受野思想,分层使用卷积核做内积,渐渐扩展后层单个特征的感受野,提取到局部特征;且提出多尺度分组的特征提取方
原创
发布博客 2021.08.29 ·
439 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

(阅读笔记)PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet一、动机和贡献二、点云特性三、PointNet网络结构分类网络分割网络一、动机和贡献动机:大多数研究人员选择将不规则的点云数据转换成规则的3D体素网格或特征投影,导致大量的点云信息缺失。贡献:设计了一种直接消耗点云的新型神经网络PointNet,考虑点云的无序性、点间关系、排列不变性;训练PointNet网络用来执行三维形状分类、形状部分分割和场景语义分析任务,提供了统一的体系结构。二、点云特性无序点云数据是一个集合,对数据的顺序是不敏感的。这就意味这处理点云数据的模型需要
原创
发布博客 2021.08.29 ·
388 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

torch.garther函数的numpy形式

torch.garther函数torch.garther函数的具体原理可参见这里。以二维数组为例,下述代码是行索引的例子;tensor_0 = tensor([[ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]),index = torch.tensor([[2, 1, 0]])tensor_1 = tensor_0.gather(axis=0, index)output: tens
原创
发布博客 2021.05.08 ·
3031 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

隐私保护计算

隐私保护计算隐私保护计算架构隐私保护计算目标隐私保护计算技术联邦学习安全多方计算机密计算差分隐私同态加密隐私保护计算:数据处于加密或不透明状态下的计算,数据可用不可见。隐私保护计算架构隐私保护计算目标对于隐私信息的全生命周期而言,数据存储和传输阶段的隐私保护方法相对成熟,主要针对数据计算过程和数据计算结果的隐私安全问题。隐私保护计算技术隐私保护计算技术包含联邦学习、安全多方计算、机密计算、差分隐私、同态加密等。联邦学习数据绝对掌控:数据停留本地,数据拥有者自主加入和终止;参与方不稳
原创
发布博客 2021.03.22 ·
2230 阅读 ·
0 点赞 ·
4 评论 ·
19 收藏

(阅读笔记)Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning

Falcon:隐私推理和训练本文贡献模型定义基础知识或先验理解安全计算协议设计本文贡献支持隐私保护前向推理和反向训练,且支持端对端的大型网络推理和训练;多种卷积神经网络,多种数据集,多种信息传输方式(LAN和WAN设置);支持安全批量归一化的前向计算和反向传播;支持半可信场景和 Honest-Majority的恶意场景,可供选择;安全协议性能提升,融合之前工作SecureNN以及安全三方计算框架ABY3协议的思想,通过简化代数实现定点算术运算,降低整数环大小,即降低数据类型,显然降低通信开销(众
原创
发布博客 2021.03.30 ·
1752 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

联邦学习进展和问题Advances and Open Problems in Federated Learning

Advances and Open Problems in Federated Learning联邦学习联邦学习两种联邦学习变体:跨设备cross-device FL,主要应用于数字产品;跨企业cross-silo FL;主要应用于再保险财务风险预测、药物发现、电子健康记录挖掘[162]、医疗数据分割、智能制造等。Cross-device FL特征与挑战:中心服务器仅负责协调训练,理论上对用户数据一无所知,存在半可信或恶意安全模型假设;用户节点数量庞大,如何高效实现大批量用户并行
原创
发布博客 2021.01.08 ·
1167 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

边缘计算隐私保护研究进展

边缘计算隐私保护研究进展基础知识边缘计算的隐私保护方案基础知识边缘计算的机遇和挑战:缓解外包云计算的通信延迟问题,但仍然存在上传数据隐私泄露问题;在半可信或恶意安全模型下,如何设计基于边缘计算的轻量级安全与隐 私保护方案成为近年来国内外的研究热点。边缘计算的网络模型:请求用户向边缘节点发布计算任务,边缘节点向本地设备征集数据,边缘节点计算和分析数据,边缘节点回馈结果给请求用户,边缘节点将数据加密传输并存储在云服务器。边缘计算与云计算的区别:边缘计算的安全模型输入隐私:本地设备上传数据的
原创
发布博客 2021.01.05 ·
2549 阅读 ·
7 点赞 ·
7 评论 ·
21 收藏

安全多方计算的SPDZ协议

SPDZ协议基础知识MC from SHE两方SPDZ协议多方SPDZ协议基础知识敌手定义:被动敌手,不可信计算参与方遵循协议;主动敌手,不可信计算参与方偏离协议;协议安全定义:理想与现实执行在计算上不可区分;协议设计目标:安全多方计算;抵抗主动敌手;主动敌手占主导地位(Dishonest Majority),极端情况下,只有一个可信参与方,其他参与方均被恶意敌手腐蚀;协议设计思路:协议划分为预处理阶段(生成随机数)和在线阶段(参与方交互计算);全同态加密FHE适用于明文和密文下的相同的线性计算
原创
发布博客 2021.01.05 ·
6621 阅读 ·
5 点赞 ·
7 评论 ·
15 收藏

实时深度学习

实时深度学习研究综述
原创
发布博客 2020.12.31 ·
977 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

word交叉引用自动编排word参考文献

以自动编排word参考文献为例Word或WPS工具栏中【开始】分栏,点击【自动编号】,自定义编号[]类型,书写参考文献;Word或WPS工具栏中【引用】分栏,点击【交叉引用】,引用自动参考文献,选择文献完整编号;【Ctrl】+【Shift】+【+】,设置正文文献编号为右上角标;引用完成或部分引用完成后,选中全文(【Ctrl】+【A】)或指定内容,点击快捷键【F9】更新交叉引用;效果:自动在正文中更新参考文献的编号;从正文中链接跳转(【Ctrl】+鼠标单击)到指定参考文献;若第4个步骤更新后,发
原创
发布博客 2020.12.20 ·
4295 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

隐私计算思考

秘密共享是信息论(无条件)安全;同态加密是计算不可区分安全;可新环境TEE是系统级安全;
原创
发布博客 2020.12.15 ·
438 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

隐私保护框架与方案进展

隐私 (联邦)框架区别隐私学习方案进展
原创
发布博客 2020.12.11 ·
610 阅读 ·
1 点赞 ·
2 评论 ·
1 收藏
加载更多