Lua4.0 正式开始

本文探讨了编译器和解释器的工作原理及其在软件开发中的应用。介绍了编译过程,包括源代码如何转化为字节码并被虚拟机执行。此外还讨论了通过将脚本编译为二进制格式来提升执行速度或实现代码保护的方法。

自己挖的坑,含泪也要填上。

自已做的计划,无论多么艰难,都要付诸实施的。

上一次写博客中断到现在又过去了几个月。

但是,不管怎么样,总算是开始了。


这个版本的编译器和解释器是分开的。

读代码的时候先编译器再解释器,解释器中包含了编译这一步。


先看一下编译大概是个什么过程。

编译把源代码转化为字节码(以及程序中的数据信息),字节码可由虚拟机执行。


字节码可以保存为文件,保存的二进制文件可以直接交给解释器执行。

这样可以省去运行前的编译步骤,以提速,或者做代码保护。

比如,在发布的时候,可以把脚本编译为二进制格式,只发布这个二进制格式的文件。

用户可以自制定二进制格式的文件,以防止反编译。

不过同时要制定二进制格式的读取,以适配自己的自定制格式。

这个步骤就是代码混淆。


编译时,把源代码从文件里读取出来,词法分析,语法分析进而转化为相应的字节码。这个一般学校的编译原理课上都有介绍,不再细说。感兴趣的同学可以自行在网上查找资源,有很多编译器高手在网上相关博文。Lua 的语法分析是个递归下降语法分析器,因为其语法设计的正交性,这也是很多人喜欢 Lua 的一个原因。


代码阅读的顺序是按程序执行的顺序,程序运行到哪儿,代码就看到哪儿。如果有必要,就先分析程序执行所需要的预备代码。遇到不是必需的,就提个问题,挖个坑在放着,到后面再慢慢的填坑。


说了这么多,先挖第一个坑,代码呢?


----------------------------------------

到目前为止的问题:

> 代码呢?

----------------------------------------


转载于:https://my.oschina.net/xhan/blog/489745

内容概要:本文围绕基于模型预测控制(MPC)与滚动时域估计(MHE)集成的目标点镇定展开研究,重点探讨了在动态系统中如何通过MPC实现精确控制,同时利用MHE进行状态估计以提升系统鲁棒性和精度。文中结合Matlab代码实现,展示了MPC与MHE协同工作的算法流程、数学建模过程及仿真验证,尤其适用于存在噪声或部分可观测的复杂系统环境。该方法能够有效处理约束条件下的最优控制问题,并实时修正状态估计偏差,从而实现对目标点的稳定镇定。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校研究生、基于模型预测控制(MPC)与滚动时域估计(MHE)集成的目标点镇定研究(Matlab代码实现)科研人员及从事控制系统开发的工程技术人员;熟悉状态估计与最优控制相关概念的研究者更为适宜; 使用场景及目标:①应用于机器人控制、航空航天、智能制造等需要高精度状态估计与反馈控制的领域;②用于深入理解MPC与MHE的耦合机制及其在实际系统中的实现方式,提升对预测控制与状态估计算法的综合设计能力; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,重点关注MPC代价函数构建、约束处理、滚动优化过程以及MHE的滑动窗口估计机制,同时参考文中可能涉及的卡尔曼滤波、最小均方误差等辅助方法,系统掌握集成架构的设计思路与调参技巧。
内容概要:本文详细介绍了一个基于遗传算法(GA)优化支持向量回归(SVR)的电力负荷预测项目,利用MATLAB实现从数据接入、特征工程、模型训练到评估部署的全流程。项目通过GA对SVR的关键超参数(如惩罚系数C、损失不敏感带ε、核宽度σ)进行全局寻优,并结合多源数据(历史负荷、气象、节假日等)构建高精度预测模型。针对电力负荷的非平稳性、多尺度季节性和突发事件干扰等问题,提出了包括差分稳定化、周期性特征嵌入、K折交叉验证和集成增强在内的综合解决方案,提升了模型在短期与中期预测中的准确性与鲁棒性。同时,项目强调可解释性与工程化能力,提供特征重要度分析、SHAP值解释及REST接口部署方案,支持实际业务应用。; 适合人群:具备一定机器学习基础和MATLAB编程经验,从事电力系统分析、能源预测或智能电网相关工作的研究人员、工程师及高校师生。; 使用场景及目标:①应用于电力系统的短期(小时级)和中期(日到月级)负荷预测,支撑调度决策、需求响应、新能源并网与市场交易;②研究GA在复杂模型超参数优化与特征选择中的实际效果;③构建可解释、可审计、可部署的工业级预测系统原型。; 阅读建议:建议结合文中提供的MATLAB代码示例逐步实现各模块功能,重点关注GA编码策略、适应度函数设计与特征重要性评估方法,并尝试在真实数据上复现实验流程以加深理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值