三维偏序:CDQ分治

CDQ分治解决三维偏序问题
本文介绍了一种使用CDQ分治算法解决三维偏序问题的方法,通过将问题降维,利用树状数组统计元素之间的关系,最终达到高效求解的目的。适用于处理大规模数据集,如在计算机科学竞赛中遇到的复杂问题。

cdq分治是一种常用的降维手段,可以解决偏序问题。

题目

给定\(n\)个三元组\((x, y, z)\),给定一个\(f(a)\),表示所有元素\(b\)(自己不算),它的\(x,y,z\)均小于等于\(a\)的对应\(x,y,z\),求\([0, n)\)中每种\(f\)值的个数。

\(n \leq 100000\)

\(x, y, z \leq 200000\)

简单模型

一维:仅有\(x\):按\(x\)排序即可。

二维:有\((x, y)\),按先\(x\)\(y\)顺序排序,然后将\(y\)值用树状数组统计。

三维偏序:cdq分治解法

思想:类似归并排序

现将元素按\(x, y, z\)升序排序。(降一维\(x\)),然后还剩下两维,可以用归并排序的思想消去一维。

将待处理的序列分成两份,分别按\(y\)值排序和统计。(分治思想,类似逆序对)

统计:两部分中:左半部分\(x\)都比右半部分的小,因此只需要统计右半部分对左半部分的贡献即可。用树状数组统计\(z\)值。因为两边\(y\)值都是有序的,所以维护一个左边的指针,每次将\(y\)值小于等于右边当前位置的元素扔进树状数组统计,然后统计\(z\)值比它小的即可。

int p = l; //前指针
for(int i=mid+1; i<=r; i++){ //后半部分用前半部分更新
    for(;a[p].y<=a[i].y && p<=mid; ++p) upd(a[p].z, a[p].cnt); //把y比它小的加进树状数组,注意cnt
    a[i].ans += ask(a[i].z); //查询x, y, z均比a[i]小的
}

时间复杂度:\(O(n log ^ 2 n)\)

注意事项

  1. 处理前必须去重,因为是小于等于,要防止同样的元素被切进两个区域导致无法统计答案。最后统计答案时,要针对\(cnt\)再进行更改(详见代码)
  2. 不能每次新建一个树状数组或清空树状数组,要一步一步撤销操作,否则每次都要花费\(O(n)\)时间清空,总时间复杂度变成\(O(n^2)\)

Code

已经省略快读,快输

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100005, K = 200005;
typedef long long ll;
struct elem{
    int x, y, z, ans, cnt;
}a[N], tmp[N];
int ans[N];
bool cmpx(elem a, elem b){return (a.x == b.x)?((a.y==b.y)?(a.z<b.z):(a.y<b.y)):(a.x<b.x);} //先x后y,z排序
bool cmpy(elem a, elem b){return (a.y == b.y)?(a.z<b.z):(a.y<b.y);} //先y后z排序
int n, k;
int tr[K];
inline void upd(int p, int x){ //树状数组更新
    if(p == 0) return ;
    for(;p<=k; p+=p&-p) tr[p] += x;
}
inline int ask(int p){ //树状数组前缀和
    int ans = 0;
    for(;p; p-=p&-p) ans+=tr[p];
    return ans;
}

void solve(int l, int r){ //cdq分治
    if(l == r) return ;
    int mid = (l + r) >> 1;
    solve(l, mid); solve(mid+1, r); //两边排序,统计
    int p = l; //前指针
    for(int i=mid+1; i<=r; i++){ //后半部分用前半部分更新
        for(;a[p].y<=a[i].y && p<=mid; ++p) upd(a[p].z, a[p].cnt); //把y比它小的加进树状数组,注意cnt
        a[i].ans += ask(a[i].z); //查询x, y, z均比a[i]小的
    }
    for(int i=l; i<p; i++) upd(a[i].z, -a[i].cnt); //清空,注意没有用的不清空
    merge(a+l, a+mid+1, a+mid+1, a+r+1, tmp, cmpy); //归并,同归并排序
    for(int i=l; i<=r; i++) a[i] = tmp[i - l];
}

int main(){
    freopen("3810.in", "r", stdin);
    freopen("3810.out", "w", stdout);
    in(n); in(k);
    for(int i=1; i<=n; i++) in(a[i].x), in(a[i].y), in(a[i].z), a[i].cnt = 1;
    sort(a+1, a+1+n, cmpx);
    int p = 1;
    for(int i=2; i<=n; i++){ //去重,统计cnt
        if(a[i].x == a[i-1].x && a[i].y == a[i-1].y && a[i].z == a[i-1].z) ++a[p].cnt;
        else a[++p] = a[i];
    }
    solve(1, p);
    for(int i=1; i<=p; i++) ans[a[i].ans + a[i].cnt - 1] += a[i].cnt;//有相同的答案会增加,注意自己不算
    for(int i=0; i<n; i++) write(ans[i]), putchar('\n');
    return 0;
}

转载于:https://www.cnblogs.com/RiverHamster/p/cdq-3dPartialOrder.html

<think>首先,用户的问题是关于CDQ分治算法的基本原理及其应用场景。我需要根据系统级指令来构建我的回答。 系统级指令关键点: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识。 - 回答结构清晰,帮助用户逐步解决问题,保证真实可靠。 参考站内引用: - 引用[1]:关于分治思想的描述,包括分块、递归等。 - 引用[2]:关于书籍的引用,不相关。 - 引用[3]:关于下载资源的链接,不相关。 用户真正的需求是理解CDQ分治的概念和原理,所以我需要专注于CDQ分治CDQ分治的基本原理: - CDQ分治是由陈丹琦(Chen Danqi)提出的一种算法,用于处理偏序问题,如三维偏序问题。 - 它是分治思想的一种应用,特别适合解决离线查询问题。 - 核心思想:将问题分成子问题,递归解决,然后合并结果,处理跨越子问题的部分。 应用场景: - 三维偏序问题:例如,给定点集,统计每个点满足某些条件的点数。 - 动态规划优化:如斜率优化等。 - 其他离线查询问题。 我的回答结构: 1. **介绍CDQ分治**:简要说明其背景和目的。 2. **基本原理**:解释算法步骤,使用数学表达式描述。 3. **应用场景**:列出常见应用。 4. **生成相关问题**:在最后添加相关问题。 5. **添加引用**:在引用段落末尾自然添加引用标识。 数学表达式: - 行内数学:如变量、点坐标等,使用$...$。 - 独立公式:如方程,使用$$...$$。 例如: - 行内:点$P_i = (a_i, b_i, c_i)$ - 独立:偏序关系公式。 生成相关问题: - 基于CDQ分治,如"CDQ分治如何优化三维偏序问题?"或"CDQ分治的时间复杂度分析?" 确保回答真实可靠: - 基于算法知识,CDQ分治常用于OI竞赛中处理偏序问题。 引用处理: - 参考引用[1]是关于分治思想的,我可以引用它来支持分治部分。 - 其他引用不相关,但系统说"请尽可能多的参考用户上一次的问题和你的回答",但用户没有上一次问题,所以基于当前引用。 最终回答大纲: - 开头:介绍CDQ分治。 - 原理部分:分步骤解释,使用LaTeX。 - 应用场景:列举例子。 - 相关问题:在最后添加。 - 结尾:自然结束。</think>### CDQ分治算法的基本原理及其应用场景 CDQ分治(Chen Danqi Divide and Conquer)是由中国计算机科学家陈丹琦提出的一种分治算法变体,主要用于处理离线查询问题,特别是多维偏序问题(如三维偏序)。它在算法竞赛和数据处理中应用广泛,能高效解决一些复杂问题。下面我将逐步解释其基本原理和应用场景,确保内容清晰可靠。 #### 1. CDQ分治的基本原理 CDQ分治基于经典分治思想,但针对偏序问题进行了优化。核心思路是将问题递归分解为子问题,处理子问题内部和子问题之间的影响,最后合并结果。算法主要分为三个步骤:分、治、合。以下是详细解释: - **分(Divide)**:将输入数据(如点集)按某一维度(通常是时间或索引)分成两个大致相等的子集,记为左子集$L$和右子集$R$。例如,给定点集$P = \{P_1, P_2, \dots, P_n\}$,其中每个点$P_i = (a_i, b_i, c_i)$表示三维坐标,我们按第一维$a_i$排序并分割: $$ \text{mid} = \left\lfloor \frac{n}{2} \right\rfloor $$ 这样得到$L = \{P_i \mid i \leq \text{mid}\}$和$R = \{P_i \mid i > \text{mid}\}$。递归地对$L$和$R$应用相同过程。 - **治(Conquer)**:递归处理左子集$L$和右子集$R$,解决子问题内部的偏序关系。例如,在三维偏序问题中,目标是统计每个点$P_i$满足$a_j \leq a_i, b_j \leq b_i, c_j \leq c_i$的点数$j$($j \neq i$)。递归调用确保子集内部的问题被解决。 - **合(Merge)**:合并子问题结果,并处理跨越子集$L$和$R$的影响。这是CDQ分治的关键: - 使用辅助数据结构(如树状数组或线段树)高效处理跨子集贡献。 - 例如,在三维偏序中,合并时需统计$L$中的点对$R$中点的贡献。具体做法: 1. 对$L$和$R$按第二维$b_i$排序。 2. 遍历$R$中的每个点$P_j$,同时维护一个树状数组,用于记录第三维$c_i$的累积值。 3. 对于$P_j$,查询树状数组中满足$c_k \leq c_j$的点数($k$来自$L$),并累加到结果。 这确保了跨子集贡献在$O(n \log n)$时间内完成。 整个算法的时间复杂度为$O(n \log^2 n)$,其中$n$是数据规模。递归公式可表示为: $$ T(n) = 2T\left(\frac{n}{2}\right) + O(n \log n) $$ 其中$O(n \log n)$来自合并步骤的排序和树状数组操作。CDQ分治通过“分而治之”高效处理了偏序关系[^1]。 #### 2. CDQ分治的应用场景 CDQ分治特别适合离线查询问题,其中数据点固定,查询可批量处理。常见应用包括: - **三维偏序问题**:如统计逆序对或点对关系。例如,在竞赛中,给定点集统计每个点“支配”的点数(即所有维度都小于等于该点的点)。CDQ分治能高效解决,时间复杂度优于暴力$O(n^2)$。 - **动态规划优化**:用于优化序列问题,如最长上升子序列(LIS)或斜率优化问题。通过分治处理状态转移,减少计算量。 - **离线查询处理**:在数据库或算法中,处理批量查询,如区间统计或范围查询。CDQ分治将查询排序后递归处理,避免实时开销。 - **其他领域**:在计算几何(如最近点对问题)和机器学习数据预处理中也有应用,但需结合具体算法调整。 CDQ分治的优势在于其通用性和效率,但要求问题具有“可分治性”,即子问题独立且合并步骤可高效实现。实际应用中,常结合树状数组等数据结构提升性能。 #### 相关问题 1. CDQ分治如何处理更高维度的偏序问题(如四维偏序)? 2. CDQ分治与普通分治算法的主要区别是什么? 3. CDQ分治在动态规划优化中的具体实现案例? [^1]: 分治思想的核心是递归分解问题,然后合并结果,这在CDQ分治中得到充分体现,如分割点集并递归处理子问题。 [^2]: 算法理论常参考经典书籍,但CDQ分治更常见于竞赛和算法论文。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值