分治算法,逆序对,三维偏序与CDQ分治

分治算法基本思想

当我们求解某些问题时,由于这些问题要处理的数据相当多,或求解过程相当复杂,使得直接求解法在时间上相当长,或者根本无法直接求出。

对于这类问题,我们往往先把它分解成几个子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个问题的解法。

如果这些子问题还较大,难以解决,可以再把它们分成几个更小的子问题,以此类推,直至可以直接求出解为止。这就是分治策略的基本思想。

归并排序


#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+5,oo=2*1e9;
int n,L[maxn],R[maxn],a[maxn];
void merge(int l,int mid,int r){
	int n1=mid-l+1;
	int n2=r-mid;//r-(mid+1)+1
	for(int i=1;i<=n1;i++)L[i]=a[i+l-1];
	for(int i=1;i<=n2;i++)R[i]=a[i+mid];//i+(mid+1)-1
	L[n1+1]=oo;
	R[n2+1]=oo;//哨兵 
	int x=1,y=1;
	for(int i=l;i<=r;i++){
		if(L[x]<R[y])a[i]=L[x++];
		else a[i]=R[y++];
	}
	return ;
}
void solve(int l,int r){
	if(l>=r)return ;
	int mid=(l+r)/2;
	solve(l,mid);
	solve(mid+1,r);//分治 
	merge(l,mid,r);//合并子问题 
	return ;
}
int main(){
	cin>>n;
	for(int i=1;i<=n;i++)
		cin>>a[i];
	solve(1,n);
	for(int i=1;i<=n;i++)cout<<a[i]<<" ";
	return 0;
}

用分治算法实现逆序对

P1908 逆序对

#include<bits/stdc++.h>
using namespace std;
const int maxn=5e5+5,oo=2*1e9;
int n,L[maxn],R[maxn],a[maxn];
long long ans=0;
void merge(int l,int mid,int r){
	int n1=mid-l+1;
	int n2=r-mid;//r-(mid+1)+1
	for(int i=1;i<=n1;i++)L[i]=a[i+l-1];
	for(int i=1;i<=n2;i++)R[i]=a[i+mid];//i+(mid+1)-1
	L[n1+1]=oo;
	R[n2+1]=oo;//哨兵 
	int x=1,y=1;
	for(int i=l;i<=r;i++){
		if(L[x]<R[y])a[i]=L[x++];
		else a[i]=R[y++];
	}
	x=y=1;
	while(y<=n2){
		if(L[x]>R[y])ans+=n1-x+1,y++;//计算逆序对的数量 
		else x++; 
	}
	return ;
}
void solve(int l,int r){
	if(l>=r)return ;
	int mid=(l+r)/2;
	solve(l,mid);
	solve(mid+1,r);//分治 
	merge(l,mid,r);//合并子问题 
	return ;
}
int main(){
	cin>>n;
	for(int i=1;i<=n;i++)
		cin>>a[i];
	solve(1,n);
	cout<<ans;
	return 0;
}

二维偏序

定义:

形如 xi<xjx_i<x_jxi​<xj​ 且 yi<yjy_i<y_jyi​<yj​ 之类的约束条件,我们可以称为二维偏序。

逆序对就是一个非常经典的二位偏序。

解决:

如果按照暴力想法,我们 O(n2)O(n^2)O(n2)的时间枚举 i,ji,ji,j,这样太慢了。

处理第 iii 位时,我们已经处理过 [1,i−1]\left[ 1,i-1 \right][1,i−1] 的数量,那么我们可不可以用一个数据结构记录一下之前的情况呢?

这就引出了二维偏序。

我们把第一维从小到大排序,然后遍历,将第二位插入树状数组中,每次查询,即可解决问题。

例题:

有n个学生,第i个学生有两个技巧:x[i]x\left[ i \right]x[i] 和 y[i]y\left[ i \right ] y[i] ,不存在两个学生的技巧完全相同。

如果 x[j]≤x[i]x[j]\leq x[i]x[j]≤x[i] 且 y[j]≤[i]y[j]\leq [i]y[j]≤[i] ,那么学生 iii 就是比学生 jjj 强,学生 jjj 比学生 iii 弱。

假设总共有 aaa 个学生比第 iii 个学生弱,那么第 iii 个学生的等级就是 aaa 。

现在的问题是,依次输出:

有多少个学生的等级是 000 ?

有多少个学生的等级是 111 ?

有多少个学生的等级是 222 ?

......

有多少个学生的等级是 n−1n-1n−1 ?

输入格式

第一行,一个整数nnn。1≤n≤1000001\leq n\leq 1000001≤n≤100000。

接下来n行,第i行有两个整数x[i]x[ i ]x[i]和y[i]y[ i ]y[i]。 1≤x[i],y[i]≤10000001\leq x[i],y[i]\leq 10000001≤x[i],y[i]≤1000000

输出格式

共nnn行,每行一个整数。

输入:

5

1 1

5 1

7 1

3 3

5 5

输出:

1 2 1 1 0

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值