
导读
基于有限产能的可视化派工工作台是一个先进的技术平台,它具有强大的灵活性,以满足在高度动态环境中生产车间派工的现场复杂需求,能够有效地整合PLM、ERP、MES系统,对工艺、物料、设备快速优化分配,可以将甘特图可视化对事件及设备进行监控以及实时对生产进度进行可视化跟踪,确保工单的加工质量、劳力效率,有效地利用设备产能、降低运营成本、改善按时工单交付率以及缩短生产周期等等。
企业的计划从时段长短可以分为年、月、周、日,而日计划是生产管理中最重要的环节之一,是生产现场每天工作最直接的依据来源。但问题来了:
☑ 设备太多,身为车间计划人员却无法快速算出车间日计划;
☑ 紧急插单后无法对已经安排好的计划快速应对;
☑ 算出车间日计划主要依靠的是经验;而一旦计划员离职,经验无法传承;
☑ 为了提升管理,单独购买排程软件,但价格昂贵,且需要与现有ERP和MES软件大量集成;
☑ 专业的APS对于数据准备要求很高,但是因为现场多变,所以希望在不高的数据基础上可以计算出一个可以近似可用的的建议;
如果此时的您对这些问题颇有感受,那么“派工工作台”的功能值得你了解。
派工工作台功能界面展现:主界面

清晰的功能界面区分加上专属的操作按钮,让操作更简单易学,快速上手;
? 操作按钮功能区:可直接点击或与界面联动点击显示指定功能;
? 列表区:依据所选条件整体展示业务执行情况;
? 甘特图区:图形化显示列表任务计划安排与执行情况;
? 负载区:图形化显示各设备与工作中心中排程资源的计划安排与执行情况、每日设定总能力与加班安排情况,显示能力构成任务信息、快速定位派工任务。
派工工作台功能界面展现:批量派工

? 数据处理区:加载指定工作中心需派工数据,自动计算优先级支持手动调整,可依据能力情况指定自动派工任务。
场景介绍
? 如何生成日计划?


基于有限能力进行批量自动派工时,可依据企业情况进行设置派工天数、派工开始时间、按班次或按日期生成派工任务等,生成的派工任务确认下达后可通过主界面关联查询下的“查询下达派工”功能显示并打印生成日计划。
可满足如下场景应用:
☑ T+1、T+2、T+3滚动计划方式,最长派工时间跨度可达5天,通过自动派工天数与派工开始时间进行调节;
☑ 可按天或按班次精准定位生成派工任务颗粒度,通过派工生成方式进行调节;
☑ 当日快结束时,剩余时间已经不够安排新的任务,可通过派工日尾低于不派工设置进行调节;
☑ 生成的日派工计划可以基于上工序已经安排好的日计划进行顺排,保证计划的衔接更准确;
☑ 对于有些非关键工序、非汇报工序可有选择的是否安排到日计划中;
☑ 同一工作中心下设备选择性的进行批量智能分配任务。

? 临时加班或设备异常引起的日历调整
引入设备临时日历解决可变设备能力,可快速调整各设备实际工作日历应对企业安排的临时加班或休息;


在主界面选择已安排到设备的当日派工任务,点击业务操作下“调整临时日历”,将自动弹出该派工设备在派工开始日期的临时日历,通过增加班次加班时段或更改班次、班次时段以真实体现企业每日设备的不同能力,多设备调整项或多日期调整项相同时,可使用调整后的临时日历通过业务操作下的“套用日历”功能进行批量调整。
? 紧急插单,插单前如何识别已安排任务?如何快速调整?插单后对关联影响任务如何快速调整?

可通过负载区直接查看指定设备或工作中心延期未完任务情况与计划期内每日安排情况,变更任务安排直接新增插单任务。
也可通过批量派工功能将原计划期内指定工作中心计划态任务集中清除,重新进行该工作中心批量派工,提升插单任务工序优先级。
功能价值体现
☑ 通过设备有限产能快速分配日计划;
☑ 生产基础数据不需要那么准确就可以安排出相对可执行的计划;
☑ 可集中模拟与集中删除,快速调整已生成计划;
☑ 派工工作台与现场触摸屏共联,计划直接下发,不需要中转,全程无纸化;
☑ 可变的设备能力随需应变,更贴近实际生产;
☑ 通过可视化的甘特图进度展示、拖拽进度条快速调整计划时间;
☑ 柱状图体现标准能力、额外能力、计划安排工时、已完成工时情况;
☑ 紧急插单时,可提前预览任务安排并作出快速安排与调整。
心动就要行动
基于有限产能的可视化派工工作台,以轻量化设置即可实现基于有限能力自动派工为基础,以全程可视化的进度甘特图与能力负荷图展现为主基调,以企业使用MES为一体化场景原型,以准确的日计划达到业务闭环控制为不变的目标,如果你对该功能有那么一点点动心,请来试试我们的新成员派工工作台功能吧!
关于金蝶云·星空
金蝶云·星空,是金蝶凭借26年对中国企业管理模式的深刻洞察和实践,基于云计算、大数据、社交、人工智能、物联网等前沿技术研发的新一代战略性企业管理软件平台。
金蝶云·星空聚焦多组织、多利润中心的大中型企业,全面支持多组织业务协同、精细管控。金蝶连续三年蝉联中国企业级SaaS云服务市场占有率第一*(来自IDC最新数据),成功服务华为、三星、腾讯、可口可乐、阿里巴巴、海尔、LG等一大批世界知名企业。
