POJ1741Tree [点分治]【学习笔记】

Tree
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 20098 Accepted: 6608

Description

Give a tree with n vertices,each edge has a length(positive integer less than 1001). 
Define dist(u,v)=The min distance between node u and v. 
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k. 
Write a program that will count how many pairs which are valid for a given tree. 

Input

The input contains several test cases. The first line of each test case contains two integers n, k. (n<=10000) The following n-1 lines each contains three integers u,v,l, which means there is an edge between node u and v of length l. 
The last test case is followed by two zeros. 

Output

For each test case output the answer on a single line.

题意:给一颗带权树,求树上长度不超过L的路径条数

首先有一个有树高限制时的树形DP做法..........
 

对于一条树路径 只有经过或不经过一个点的情况

考虑经过一个点的路径,可以由其他点到它的两条路径拼出来

对于不经过的情况 把一棵树按这个点拆成好几棵分治
 
每次对于当前子树选择树的重心,最多递归logn次,而每层最多只有n个点(每层的所有子树组成整棵树),复杂度O(logn*处理每层的复杂度)
 
过程:
1.求重心
2.处理经过当前点的路径
3.对子树分治
 
每次分治的各个子树是互不影响的,vis[i]表示i这个点已经分治过了
 
注意:既然你的写法是先找重心在递归,那么一定要rt=0;dfsRt(v,0);dfsSol(rt);是rt啊啊啊啊啊不是v了
 
对于本题,处理经过点u的路径时,先dfs子树中所有点对深度,排序两个指针往里扫计算<=L的,在减去在同一颗子树里的(同样计算)
总复杂度O(nlog^2n)
 
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=10005,INF=1e9+5;
inline int read(){
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
int n,L,u,v,w;
struct edge{
    int v,w,ne;
}e[N<<1];
int h[N],cnt;
inline void ins(int u,int v,int w){
    cnt++;
    e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
    cnt++;
    e[cnt].v=u;e[cnt].w=w;e[cnt].ne=h[v];h[v]=cnt;
}

int size[N],d[N],vis[N],root,sum;
void dfsRoot(int u,int fa){
    size[u]=1;d[u]=0;
    for(int i=h[u];i;i=e[i].ne){
        int v=e[i].v;
        if(vis[v]||v==fa) continue;
        dfsRoot(v,u);
        size[u]+=size[v];
        d[u]=max(d[u],size[v]);
    }
    d[u]=max(d[u],sum-size[u]);
    if(d[u]<d[root]) root=u;
}
int deep[N],a[N];
void dfsDeep(int u,int fa){
    a[++a[0]]=deep[u];
    for(int i=h[u];i;i=e[i].ne){
        int v=e[i].v;
        if(vis[v]||v==fa) continue;
        deep[v]=deep[u]+e[i].w;
        dfsDeep(v,u);
    }
}

int cal(int u,int now){
    deep[u]=now;a[0]=0;
    dfsDeep(u,0);
    sort(a+1,a+1+a[0]);
    int l=1,r=a[0],ans=0;
    while(l<r){
        if(a[l]+a[r]<=L) ans+=r-l,l++;
        else r--;
    }
    return ans;
}
int ans;
void dfsSol(int u){//printf("dfs %d\n",u);
    vis[u]=1;
    ans+=cal(u,0);
    for(int i=h[u];i;i=e[i].ne){
        int v=e[i].v;
        if(vis[v]) continue;
        ans-=cal(v,e[i].w);
        sum=size[v];
        root=0;dfsRoot(v,0);
        dfsSol(root);
    }
}

int main(){
    //freopen("in.txt","r",stdin);
    while(true){
        n=read();L=read();if(n==0) break;
        cnt=0;memset(h,0,sizeof(h));
        memset(vis,0,sizeof(vis));
        ans=0;
        for(int i=1;i<=n-1;i++) u=read(),v=read(),w=read(),ins(u,v,w);
        sum=n;
        root=0;d[0]=INF;
        dfsRoot(1,0);
        dfsSol(root);
        printf("%d\n",ans);
    }
}

 

 还有一种做法,用treap维护,考虑经过每个点的路径时,建一颗treap维护长度,每个点加上之前遍历过的这点的子树中<L-deep[v]+1的,最后再把这棵子树的所有深度加入treap
 
 
//
//  main.cpp
//  treap
//
//  Created by Candy on 2017/1/9.
//  Copyright ? 2017年 Candy. All rights reserved.
//

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define lc t[x].l
#define rc t[x].r
const int N=1e5+5,INF=1e9;
int read(){
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
    return x*f;
}

struct node{
    int l,r,v,w,size,rnd;
}t[N];
int sz,root;
inline void update(int x){t[x].size=t[lc].size+t[rc].size+t[x].w;}
inline void lturn(int &x){
    int c=rc;rc=t[c].l;t[c].l=x;
    t[c].size=t[x].size;update(x);x=c;
}
inline void rturn(int &x){
    int c=lc;lc=t[c].r;t[c].r=x;
    t[c].size=t[x].size;update(x);x=c;
}
void ins(int &x,int v){
    if(x==0){
        x=++sz;
        t[x].l=t[x].r=0;
        t[x].v=v;t[x].w=t[x].size=1;
        t[x].rnd=rand();
        return;
    }
    t[x].size++;
    if(v==t[x].v) t[x].w++;
    else if(v<t[x].v){
        ins(lc,v);
        if(t[lc].rnd<t[x].rnd) rturn(x);
    }else{
        ins(rc,v);
        if(t[rc].rnd<t[x].rnd) lturn(x);
    }
}
int que(int x,int v){//cnt of <v
    if(!x) return 0;
    if(t[x].v==v) return t[lc].size;
    if(v<t[x].v) return que(lc,v);
    else return t[lc].size+t[x].w+que(rc,v);
}

int n,L,u,v,w;
struct edge{
    int v,w,ne;
}e[N<<1];
int h[N],cnt;
inline void ins(int u,int v,int w){
    cnt++;
    e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
    cnt++;
    e[cnt].v=u;e[cnt].w=w;e[cnt].ne=h[v];h[v]=cnt;
}
int vis[N],size[N],f[N],sum,rt;
void dfsRoot(int u,int fa){
    size[u]=1;f[u]=0;
    for(int i=h[u];i;i=e[i].ne){
        int v=e[i].v;
        if(vis[v]||v==fa) continue;
        dfsRoot(v,u);
        size[u]+=size[v];
        f[u]=max(f[u],size[v]);
    }
    f[u]=max(f[u],sum-size[u]);
    if(f[u]<f[rt]) rt=u;
}

int ans,deep[N];
void dfsDeep(int u,int fa,int p){
    if(p==0) ans+=que(root,L-deep[u]+1);
    else ins(root,deep[u]);
    for(int i=h[u];i;i=e[i].ne){
        int v=e[i].v;
        if(vis[v]||v==fa) continue;
        deep[v]=deep[u]+e[i].w;
        dfsDeep(v,u,p);
    }
}
void dfsSol(int u){//printf("sol %d\n",u);
    vis[u]=1;
    sz=root=0;
    ins(root,0);
    for(int i=h[u];i;i=e[i].ne){
        int v=e[i].v;
        if(vis[v]) continue;
        deep[v]=e[i].w;
        dfsDeep(v,u,0);
        dfsDeep(v,u,1);
    }
    for(int i=h[u];i;i=e[i].ne){
        int v=e[i].v;
        if(vis[v]) continue;
        sum=size[v];
        rt=0;dfsRoot(v,u);
        dfsSol(rt);
    }
}
int main(){
    //freopen("in.txt","r",stdin);
    while(true){
        n=read();L=read();if(n==0) break;
        cnt=0;memset(h,0,sizeof(h));
        memset(vis,0,sizeof(vis));
        ans=0;
        for(int i=1;i<=n-1;i++) u=read(),v=read(),w=read(),ins(u,v,w);
        sum=n;
        rt=0;f[0]=INF;
        dfsRoot(1,0);
        dfsSol(rt);
        printf("%d\n",ans);
    }
}

 

 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值