1257: [CQOI2007]余数之和sum
Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 4474 Solved: 2083
[Submit][Status][Discuss]
Description
给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7
Input
输入仅一行,包含两个整数n, k。
Output
输出仅一行,即j(n, k)。
Sample Input
5 3
Sample Output
7
HINT
50%的数据满足:1<=n, k<=1000 100%的数据满足:1<=n ,k<=10^9
Source
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1257
分析:用了一个看起来比较奇怪的方法,首先x % i = x – (int)(x / i) * i,这个很好YY吧
然后可以找出每个(int)(x / i)相等的一段用等差数列求和来做。可以证明最多分成sqrt(n)段。
下面给出AC代码:
1 #include <bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 inline int read() 5 { 6 int x=0,f=1; 7 char ch=getchar(); 8 while(ch<'0'||ch>'9') 9 { 10 if(ch=='-') 11 f=-1; 12 ch=getchar(); 13 } 14 while(ch>='0'&&ch<='9') 15 { 16 x=x*10+ch-'0'; 17 ch=getchar(); 18 } 19 return x*f; 20 } 21 int n,k; 22 ll ans; 23 int main() 24 { 25 n=read(); 26 k=read(); 27 if(n>k) 28 { 29 ans=(ll)(n-k)*k; 30 n=k; 31 } 32 int r; 33 for(int i=1;i<=n;i=r+1) 34 { 35 int t=k/i; 36 r=k/t; 37 if(r>=n)r=n; 38 ans+=(ll)(r-i+1)*k-(ll)(r-i+1)*(i+r)/2*t; 39 } 40 printf("%lld\n",ans); 41 return 0; 42 }