Code Lock

Code Lock

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 255 Accepted Submission(s): 114
 
Problem Description
A lock you use has a code system to be opened instead of a key. The lock contains a sequence of wheels. Each wheel has the 26 letters of the English alphabet 'a' through 'z', in order. If you move a wheel up, the letter it shows changes to the next letter in the English alphabet (if it was showing the last letter 'z', then it changes to 'a').
At each operation, you are only allowed to move some specific subsequence of contiguous wheels up. This has the same effect of moving each of the wheels up within the subsequence.
If a lock can change to another after a sequence of operations, we regard them as same lock. Find out how many different locks exist?
 
Input
There are several test cases in the input.

Each test case begin with two integers N (1<=N<=10000000) and M (0<=M<=1000) indicating the length of the code system and the number of legal operations.
Then M lines follows. Each line contains two integer L and R (1<=L<=R<=N), means an interval [L, R], each time you can choose one interval, move all of the wheels in this interval up.

The input terminates by end of file marker.
 
Output
For each test case, output the answer mod 1000000007
 
Sample Input
1 1
1 1
2 1
1 2
 
Sample Output
1
26
 
Author
hanshuai
 
Source
2010 ACM-ICPC Multi-University Training Contest(3)——Host by WHU
 
Recommend
zhouzeyong
/*
没有可操作区间的时候是26的n次方,然后多一个可操作区间,就会少26种
每一个不可操作的区间的种类数是26种,就是26^k种答案
*/ #include<bits/stdc++.h> using namespace std; const int mod=1000000007; int n,m; int l,r; int x,y; int bin[10000005]; int findx(int x){ int temp=x; while(x!=bin[x]){ x=bin[x]; } bin[temp]=x; return x; } int Union(int x,int y){ int fx=findx(x); int fy=findx(y); if(fx!=fy){ bin[fy]=fx; return 1; }else return 0; } /***********快速幂模板**************/ long long power(int n,int x){ if(x==0) return 1; long long t=power(n,x/2); t=t*t%mod; if(x%2==1)t=t*n%mod; return t; } /***********快速幂模板**************/ int main(){ int n,m; while(scanf("%d%d",&n,&m)!=EOF){ for(int i=0;i<=n+2;i++){ bin[i]=i; } int ans=0; for(int i=0;i<m;i++){ scanf("%d%d",&x,&y); ans+=Union(x,y+1); } printf("%d\n",power(26,n-ans)); } }

 

转载于:https://www.cnblogs.com/wuwangchuxin0924/p/6188707.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值