金渤淏
摘 要:随着世界科学技术水平的普遍提高,电子计算机技术逐渐发展成熟,其中计算机模拟算法在其他学科中有着十分广泛的应用,从而给这些学科的研究提供了算法基础。电子计算机技术中的计算机模拟算法是指安装在计算机系统中的模拟仿真的解算装置。本文立足于计算机模拟算法的相关概念,浅谈计算机模拟算法在数学建模中的应用,进一步研究计算机模拟算法的应用与意义。
关键词:计算机 模拟算法 数学 建模 应用
一、计算机模拟算法概述
1.计算机模拟算法的概念
计算机模拟算法是计算机系统中的一种计算方法,它是安装在计算机系统中模拟仿真的一种计算装置。近年来,计算机模拟技术逐渐成熟,计算机模拟算法也被广泛应用于生产、生活以及科学研究的过程之中,为我们的生活与生产提供了更便利的计算以及更加科学精密的数据研究。[1]
2.计算机模拟算法的特点
(1)模拟研究
计算机模拟算法的一个特点是模拟研究。在科学技术研究领域,计算机模拟算法往往应用与模拟研究之中,用于研究虚拟的海量数据以及复杂的模拟数据运算。
(2)公式复杂
计算机模拟算法的另一个特点是公式较为复杂。计算机模拟算法的优点在于能够进行较为复杂的公式计算,这是相对比于人力计算以及普通计算机计算的一大优势。计算机模拟算法的数据计算与数据处理能力较强,能够解决较为复杂的计算过程。[2]
(3)准确率高,安全可靠
计算机模拟算法安装于计算机系统之中的,它的计算较为精密且准确率高,可以避免其他计算模式因计算错误而导致的麻烦,而且计算机模拟算法经过可靠性验证,十分安全可靠。[3]
二、计算机模拟算法的意义
1.提高计算效率
由上文对计算机模拟算法的概述不难看出,计算机模拟算法是基于计算机系统而进行的计算模式,因此计算机模拟算法可以在最短的时间内处理海量的计算数据,并对这些数据进行整理、归纳与计算。因此,计算机模拟算法的意义在于提高计算效率,节约计算的生产成本与人力成本。
2.算法优化
计算机模拟算法不是一成不变的,而是在计算的过程中随着解决问题与计算过程的不同,而在计算机系统中不断优化的。因此,从宏观上来说,计算机模拟算法的意义在于不断地对算法进行优化,从而找出解决问题最优解法,这就为计算过程的简便以及算法的优化提供了更多的机会与更加廣阔的途径。
3.为生产与科学技术研究提供基础
计算机模拟算法的另一个重要意义在于,计算机模拟算法可以为生产与科学技术的研究提供基础。一方面,从理论上来说计算机模拟算法可以对个计算与研究的变量进行设定,然后将被研究变量按属性归类进而进行计算。从这个角度看,在生产过程中,计算机模拟算法可以为生产提供设计、数据模型指导以及数据信息、生成模拟数据与模拟图等,为生产与科学技术研究的深入提供理论依据与实践基础。
例如,以纺织工厂设计布料的条纹样式来说,计算机模拟算法对生产的布料、纱线密度、纱线粗细以及布料的条纹进行识别与设计,然后把通过计算机模拟算法计算后得到的数据形成数学模拟图形,然后计算机模拟算法会对这些数据与模型进行检验,最终确定纺织工厂布料的花纹。这个过程就是计算机模拟算法为生产提供坚实基础的典型案例。
三、计算机模拟算法在数学建模中的应用
1.数学模型的建立
计算机模拟算法在数学模型的建立中有广泛的应用。在数学问题中,许多复杂的数学变量与繁杂的数学条件使得数学模型的建立较为困难,计算机模拟算法则可以模拟各种实际系统的运算模式,对这些数据进行归类,从而有利于建立便捷且科学准确的数学模型。所以从这个角度来看,计算机模拟算法是计算机系统计算理论与实际数学问题的解答的重要媒介。
2.数学模型的分析与解答
计算机模拟算法可以应用于数学模型的分析与解答。计算机模拟系统可以被设定模拟一定的系统算法,从而可以解决较为难解的排队问题以及随机概率等问题。计算机模拟算法可以对已经设定好的数学模型进行精准的分析,从而找出解决数学模型的最优解法,进而对数学模型进行最全面且准确的解答,且可以从不同的思考角度找出最优解。[4]
3.数学模型的检验
计算机模拟算法在数学建模中的应用的另一个表现,在于计算机模拟算法可以用来对数学建模进行检验。数学建模过程结束之后,为了数学建模的科学性以及计算过程的准确性,计算机模拟算法会对已有数学建模进行可靠性检验,对于建模数据进行验证与运算,并对建模的构架进行科学性检验,从最大程度上保证数学建模的科学性与准确性,从而提高数学建模以及数学问题解答的效率。
结语
近年来,随着科学技术水平的普遍提高与计算机技术的逐渐发展成熟,计算机模拟算法越来越多地被应用与生活、生产以及科学研究的过程之中。计算机模拟算法是计算机技术与数学学科紧密结合的产物,为数学建模以及数学难题的解答提供了坚实的理论与检验系统。作为高中生来说,我们应该认真学习计算机理论知识,并善于思考,结合实践经验与社会实际,将所学的知识与之相结合,从而不断得到知识的升华,为未来大学计算机知识的学习奠定基础,并养成良好的思考习惯,也为未来计算机技术的发展奉献自己的力量。
参考文献
[1]高旭,姜楠.分形L系统理论与植物图像的计算机模拟[J].扬州大学学报(自然科学版).2000(01).
[2]苏德富,钟诚.计算机算法设计与分析[M].电子工业出版社.2005.
[3]郑燕林,李卢.技术支持的基于创造的学习——美国中小学创客教育的内涵、特征与实施路径[J].开放教育研究.2014(06).
[4]付博研,卢振洋,白立来,陈雨,刘嘉.一种改进的Canny算法及其仿真验证[J]. 现代电子技术.2014(18).endprint