适合利用计算机模拟的是,计算机模拟在数学建模中的应用

· ·

专 题 研 究

秽 渺

铺 黧枫模批在 数学建摸咿 庭

◎常 春 张 舒 (桂林 高等 师范专科 学校数学与计算机科学 系,桂林 ,541001;海军工程 大学理学院 ,武汉 ,430033)

【摘要】本文主要阐述了如何利用计算机模拟来解决数

学建模 中的实际 问题.首先 ,提 出 问题 ,根 据 问题 的具 体模

式对其进行分析整理.其 次,对 上述 问题进 行数 学建模.然

后,利用计算机进行模拟,主要分为随机模拟(蒙特一卡洛

方法)、离散系统模 拟和连 续 系统模拟 三种 类型.最后对 结

果进行分析 ,说 明计算机模拟方法在数学建模 中的有效性.

【关键词】计算机模拟;数学建模;随机模拟;离散系统

【中图分类号】0242 【文献标识码】A

、引 言

模 型(Mode1)和模 型建 构 (Modeling)不仅 仅是 科学 理

论体 系中的重要 内容 ,也是 我们认识 世界 的重要 工具 和方

法 .计算机技术的飞速发展 给许 多学科带来 了巨大 的影 响 ,

计 算机使 问题 的求解变得更加 简单 方便 ,同时 ,也使 解决 问

题 的领 域变得更加宽泛.计算 机适合解决不确 定 、规 模大且

难以解析化的数学模型.例如,对于一些带随机因素的复杂

系统的问题 ,建模之前常需 要做一些简化假 设 ,这 可能导致

与实际情况相距甚远,解答无法应用.此时,利用计算机进

行模拟几乎成为 了唯一 的选 择.在 历届 全 国和国际 大学 生

数学建模比赛(MCM/ICM)中,计算机模拟常用于去求解、

检验 ,是建模过程 中非常重要的一种方法u

一 般地,计算机模拟在 以下几种情况 中能有效解 决

问题 :

(1)难 以在实际环境中进行实验和观察 ,只能用计 算机

模拟 ,比如太 空飞行 的研究 ;

(2)需要在短时间内观察到系统发展的全过程,用来估

计某些参数对系统变化的影响 ;

(3)需要对系统进行 长时 间观察 、运行 比较 ,从 大量方

案 中 寻求最优方案 ;

(4)难 以用解析式表示的系统 ;

(5)虽然有解析式 ,但是分析 、计算过程过于 复杂 ,只 能

借助计算机模拟来提供简单可行 的方法.

在通常情况下 ,计算机模拟是按时间来划分的,因为计

算机模拟实质 上是 系统随 时间变化 而变化 的动 态写 照.目

前 ,计算机模拟大致可 以分为随机模 拟(蒙特一卡洛方 法 )、

离散 系 统 模 拟 和 连 续 系统 模 拟 类.其 中,蒙 特一 卡洛

(Monto—Carlo)方法是 典 型的静 态模 拟 ;离散 系统模 拟和 连

续系统模拟是属于 动态模 拟.下 面将就 具体 问题讨 论这 三

种数学建模竞赛中经常用到的模 拟方法.

二 、问题 的定 义与分类

数学建模 的第一步 ,就是提 出问题 ,对具体 问题进 行分

析 、整理与归类.

. 问题的定义

问题是指不能直接 利用 已有知 识处 理 ,但是 可 以间接

用 已有知识处理 的情境 .

2.问题的分类

根据计算机模 拟的种类 ,问题 主要可 以分 为 以下三种

模式 :非线性规划问题 、离散 系统 问题 和连续系统 问题三种

类型.下面举例说明一下这三种不同类型的问题.

(1)非线性 规划(nonlinear programming)问题

非线性规划是具有 非线性约 束条件或 目标 函数 的数 学

规划 ,研究一个 n元实 函数在 一组等式 或不等 式 的约

内容概要:本文深入探讨了多种高级格兰杰因果检验方法,包括非线性格兰杰因果检验、分位数格兰杰因果检验、混频格兰杰因果检验以及频域因果检验。每种方法都有其独特之处,适用于不同类型的时间序列数据。非线性格兰杰因果检验分为非参数方法、双变量和多元检验,能够在不假设数据分布的情况下处理复杂的关系。分位数格兰杰因果检验则关注不同分位数下的因果关系,尤其适合经济数据的研究。混频格兰杰因果检验解决了不同频率数据之间的因果关系分析问题,而频域因果检验则专注于不同频率成分下的因果关系。文中还提供了具体的Python和R代码示例,帮助读者理解和应用这些方法。 适合人群:从事时间序列分析、经济学、金融学等领域研究的专业人士,尤其是对非线性因果关系感兴趣的学者和技术人员。 使用场景及目标:①研究复杂非线性时间序列数据中的因果关系;②分析不同分位数下的经济变量因果关系;③处理不同频率数据的因果关系;④识别特定频率成分下的因果关系。通过这些方法,研究人员可以获得更全面、细致的因果关系洞察。 阅读建议:由于涉及较多数学公式和编程代码,建议读者具备一定的统计学和编程基础,特别是对时间序列分析有一定了解。同时,建议结合具体案例进行实践操作,以便更好地掌握这些方法的实际应用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值