一道极限题

证明: $$\lim_{n\to+\infty}\cos^{n}\left(\frac{1}{x}\right)dx=0$$

证明:作变量替换 $u=\frac{1}{x}$, 则有
\begin{align*}
\int_{1}^{\infty}\left|\frac{\cos^{n}u}{u^{2}}\right| du&=\int_{1}^{\frac{\pi}{2}}\left|\frac{\cos^{n}u}{u^{2}}\right| du+\sum_{k=0}^{\infty}\int_{\left(k+\frac{1}{2}\right)\pi}^{\left(k+\frac{3}{2}\right)\pi}\left|\frac{\cos^{n}u}{u^{2}}\right| du\\
&\leq \cos^{n} 1 \int_{1}^{\frac{\pi}{2}}\frac{1}{u^{2}}du+\frac{4}{\pi^{2}}\sum_{k=0}^{\infty}\frac{1}{(2k+1)^{2}}\int_{0}^{\pi}|\cos^{n}u|du\\
&=\cos^{n} 1 \int_{1}^{\frac{\pi}{2}}\frac{1}{u^{2}}du+\frac{1}{2}\int_{0}^{\pi}|\cos^{n}u|du
\end{align*}
令$n\to \infty$,知 $\cos^{n} 1\to 0, \int_{0}^{\pi}|\cos^{n}u|du \to 0$. 这是由于
$$ \int_{0}^{\pi}|\cos^{n}u|du=2\int_{0}^{\frac{\pi}{2}}\cos ^{n}u du=2 I_{n}$$
由于单调有界收敛原理知$n\to \infty$极限必然存在. 所以考虑偶序列递推公式和 Wallis 公式
$$I_{2n}=\frac{(2n-1)!!}{(2n)!!}\frac{\pi}{2}\sim\sqrt{\frac{\pi}{2}}\sqrt{\frac{1}{2n}},\, n\to \infty$$

转载于:https://www.cnblogs.com/zhangwenbiao/p/5931474.html

### 回答1: 当 $x$ 趋近于 $0$ 时,$\frac{\sqrt{1+x}-\sqrt{1-x}}{x}$ 的极限是多少? 答案:$\frac{1}{\sqrt{2}}$。 解析:我们可以通过有理化的方式来求解这个极限。具体做法为: $$ \begin{aligned} \lim_{x\to 0}\frac{\sqrt{1+x}-\sqrt{1-x}}{x} &= \lim_{x\to 0}\frac{(\sqrt{1+x}-\sqrt{1-x})(\sqrt{1+x}+\sqrt{1-x})}{x(\sqrt{1+x}+\sqrt{1-x})}\\ &= \lim_{x\to 0}\frac{1+x-(1-x)}{x(\sqrt{1+x}+\sqrt{1-x})}\\ &= \lim_{x\to 0}\frac{2x}{x(\sqrt{1+x}+\sqrt{1-x})}\\ &= \lim_{x\to 0}\frac{2}{\sqrt{1+x}+\sqrt{1-x}}\\ &= \frac{2}{\sqrt{1+0}+\sqrt{1-0}}\\ &= \frac{1}{\sqrt{2}}. \end{aligned} $$ 因此,原极限的值为 $\frac{1}{\sqrt{2}}$。 ### 回答2: 当然可以!下面是一道极限的基础: 给定函数f(x) = 2x + 3,求极限lim(x→1) f(x)的值。 解答: 要求lim(x→1) f(x),即要求当x无限接近1时,f(x)的极限值。 根据给定的函数f(x) = 2x + 3,将x代入函数表达式得到: f(x) = 2(1) + 3 = 2 + 3 = 5 因此,求得lim(x→1) f(x) = 5。 这道题目一道基础的极限,只需要将变量x代入给定的函数表达式,计算得到结果即可。 ### 回答3: 当然可以!以下是一道极限的基础题目:计算极限 $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$。 解答:首先,我们注意到在$x=1$时,分母为0,因此该极限存在。为了计算这个极限,我们可以尝试对分式进行因式分解。 分子 $x^2 - 1$ 是一个差平方,可以写成 $(x - 1)(x + 1)$。 因此,原极限可以被重写为 $\lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$。 现在,我们可以去除分式中的公因式 $(x - 1)$,得到 $\lim_{x \to 1} (x + 1)$。 由于此时分式中不再有未知数 $x$,我们可以直接将$x$代入,得到 $\lim_{x \to 1} (1 + 1) = \lim_{x \to 1} 2 = 2$。 因此,所给极限的值是2。 希望这道能够对你有所帮助!如果还有其他问,欢迎随时提出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值