记一个很恶心的背包。。。

题面POJ 1170

有诸多商品,没有商品有一个单价。可以组合的买特定个数的特定商品,这样会得到优惠。给出这些优惠策略,给出每种商品的个数,问最少能花多少钱能把这些商品带走?

 

解:输入好蛋疼,先个商品类型数,然后给每个商品的编号c,个数k,和单价p。再给出s个优惠策略,每种策略前边有一个num,表示需要多少类型的商品组合,然后是num对商品,每对给出商品的编号和数目,最后是固定类型固定数目的商品组合起来需要的花费。

题目说的很清楚,最多5种商品,s最多为99, num最多为5。所以完全可以直接写背包。。。不过这个背包是5维的,写的好蛋疼。。。

dp[i][j][k][l][m]表示背包被i件0号商品,j件1号商品。。。的最小话费,初始化为i*(单价i) + j*(price[j]) + k*(price[k]) + ...

每次转移的时候i, j, k, l, m对这s种优惠策略进行转移。。。取最小

if(i >= t0 && j >= t1 && k >= t2 && l >= t3 && m >= t4) {
      dp[i][j][k][l][m] = min(dp[i-t0][j-t1][k-t2][l-t3][m-t4] + a[o].p, dp[i][j][k][l][m]);
}

 

代码120+ms。。。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <ctime>
#include <queue>
#include <map>
#include <sstream>

#define CL(arr, val)    memset(arr, val, sizeof(arr))
#define REP(i, n)       for((i) = 0; (i) < (n); ++(i))
#define FOR(i, l, h)    for((i) = (l); (i) <= (h); ++(i))
#define FORD(i, h, l)   for((i) = (h); (i) >= (l); --(i))
#define L(x)    (x) << 1
#define R(x)    (x) << 1 | 1
#define MID(l, r)   (l + r) >> 1
#define Min(x, y)   x < y ? x : y
#define Max(x, y)   x < y ? y : x
#define E(x)    (1 << (x))
#define iabs(x)  ((x) > 0 ? (x) : -(x))

typedef long long LL;
const double eps = 1e-8;
const int inf = ~0u>>2;

using namespace std;

const int N = 110;

struct node {
    int id[6], n[6];
    int p, k;
} a[N];

struct pnode {
    int id, n, p;
} b[6];

int num[N*10];
int dp[6][6][6][6][6];

int main() {
    //freopen("data.in", "r", stdin);

    int t, i, s, x, y;
    int j, k, l, m, o, p, q;
    scanf("%d", &t);
    CL(b, 0);
    CL(a, 0);
    for(i = 0; i < t; ++i) {
        scanf("%d%d%d", &b[i].id, &b[i].n, &b[i].p);
        num[b[i].id] = i;
    }
    scanf("%d", &s);

    for(i = 0; i < s; ++i) {
        scanf("%d", &k);
        a[i].k = 0;
        while(k--) {
            scanf("%d%d", &x, &y);
            a[i].id[a[i].k] = num[x]; a[i].n[a[i].k++] = y;
        }
        scanf("%d", &p);
        a[i].p = p;
    }

    int t0, t1, t2, t3, t4;
    for(i = 0; i <= b[0].n; ++i) {
        for(j = 0; j <= b[1].n; ++j) {
            for(k = 0; k <= b[2].n; ++k) {
                for(l = 0; l <= b[3].n; ++l) {
                    for(m = 0; m <= b[4].n; ++m) {
                        dp[i][j][k][l][m] = i*b[0].p + j*b[1].p + k*b[2].p + l*b[3].p + m*b[4].p;

                        for(o = 0; o < s; ++o) {
                            t0 = t1 = t2 = t3 = t4 = 0;
                            for(q = 0; q < a[o].k; ++q) {
                                if(a[o].id[q] == 0) t0 = a[o].n[q];
                                if(a[o].id[q] == 1) t1 = a[o].n[q];
                                if(a[o].id[q] == 2) t2 = a[o].n[q];
                                if(a[o].id[q] == 3) t3 = a[o].n[q];
                                if(a[o].id[q] == 4) t4 = a[o].n[q];
                            }
                            if(i >= t0 && j >= t1 && k >= t2 && l >= t3 && m >= t4) {
                                //printf("%d %d %d %d %d\n", t0, t1, t2, t3, t4);
                                dp[i][j][k][l][m] = min(dp[i-t0][j-t1][k-t2][l-t3][m-t4] + a[o].p, dp[i][j][k][l][m]);
                            }
                        }
                    }
                }
            }
        }
    }
    printf("%d\n", dp[b[0].n][b[1].n][b[2].n][b[3].n][b[4].n]);

    return 0;
}

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值