Wireless Password
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2189 Accepted Submission(s): 610
Problem Description
Liyuan lives in a old apartment. One day, he suddenly found that there was a wireless network in the building. Liyuan did not know the password of the network, but he got some important information from his neighbor. He knew the password consists only of lowercase letters 'a'-'z', and he knew the length of the password. Furthermore, he got a magic word set, and his neighbor told him that the password included at least k words of the magic word set (the k words in the password possibly overlapping).
For instance, say that you know that the password is 3 characters long, and the magic word set includes 'she' and 'he'. Then the possible password is only 'she'.
Liyuan wants to know whether the information is enough to reduce the number of possible passwords. To answer this, please help him write a program that determines the number of possible passwords.
For instance, say that you know that the password is 3 characters long, and the magic word set includes 'she' and 'he'. Then the possible password is only 'she'.
Liyuan wants to know whether the information is enough to reduce the number of possible passwords. To answer this, please help him write a program that determines the number of possible passwords.
Input
There will be several data sets. Each data set will begin with a line with three integers n m k. n is the length of the password (1<=n<=25), m is the number of the words in the magic word set(0<=m<=10), and the number k denotes that the password included at least k words of the magic set. This is followed by m lines, each containing a word of the magic set, each word consists of between 1 and 10 lowercase letters 'a'-'z'. End of input will be marked by a line with n=0 m=0 k=0, which should not be processed.
Output
For each test case, please output the number of possible passwords MOD 20090717.
Sample Input
10 2 2 hello world 4 1 1 icpc 10 0 0 0 0 0
Sample Output
2 1 14195065
Source
Recommend
gaojie
比较综合的题目。AC自动机+DP
dp[i][j][k]表示长度为i的串匹配到状态j且字符串中的各个magic word的出现情况为k时的串的个数。i<=25,j<=100,k<=2^10-1。
1 //============================================================================ 2 // Name : HDU.cpp 3 // Author : 4 // Version : 5 // Copyright : Your copyright notice 6 // Description : Hello World in C++, Ansi-style 7 //============================================================================ 8 9 #include <iostream> 10 #include <stdio.h> 11 #include <string.h> 12 #include <algorithm> 13 #include <queue> 14 using namespace std; 15 const int MOD=20090717; 16 int n,m,k; 17 int dp[30][110][1<<10]; 18 int num[5000]; 19 20 struct Trie 21 { 22 int next[110][26],fail[110],end[110]; 23 int root,L; 24 int newnode() 25 { 26 for(int i = 0;i < 26;i++) 27 next[L][i] = -1; 28 end[L++] = 0; 29 return L-1; 30 } 31 void init() 32 { 33 L = 0; 34 root = newnode(); 35 } 36 void insert(char buf[],int id) 37 { 38 int len = strlen(buf); 39 int now = root; 40 for(int i = 0;i < len;i++) 41 { 42 if(next[now][buf[i]-'a']==-1) 43 next[now][buf[i]-'a'] = newnode(); 44 now = next[now][buf[i]-'a']; 45 } 46 end[now] |= (1<<id); 47 } 48 void build() 49 { 50 queue<int>Q; 51 fail[root] = root; 52 for(int i = 0;i < 26;i++) 53 if(next[root][i] == -1) 54 next[root][i] = root; 55 else 56 { 57 fail[next[root][i]] = root; 58 Q.push(next[root][i]); 59 } 60 while(!Q.empty()) 61 { 62 int now = Q.front(); 63 Q.pop(); 64 end[now] |= end[fail[now]]; 65 for(int i = 0;i < 26;i++) 66 if(next[now][i] == -1) 67 next[now][i] = next[fail[now]][i]; 68 else 69 { 70 fail[next[now][i]] = next[fail[now]][i]; 71 Q.push(next[now][i]); 72 } 73 } 74 } 75 int solve() 76 { 77 //memset(dp,0,sizeof(dp)); 78 for(int i = 0;i <= n;i++) 79 for(int j = 0;j < L;j++) 80 for(int p = 0;p < (1<<m);p++) 81 dp[i][j][p]=0; 82 dp[0][0][0] = 1; 83 for(int i = 0;i < n;i++) 84 for(int j = 0;j < L;j++) 85 for(int p = 0;p< (1<<m);p++) 86 if(dp[i][j][p] > 0) 87 { 88 for(int x = 0;x < 26;x++) 89 { 90 int newi = i+1; 91 int newj = next[j][x]; 92 int newp = (p|end[newj]); 93 dp[newi][newj][newp] += dp[i][j][p]; 94 dp[newi][newj][newp]%=MOD; 95 } 96 } 97 int ans = 0; 98 for(int p = 0;p < (1<<m);p++) 99 { 100 if(num[p] < k)continue; 101 for(int i = 0;i < L;i++) 102 { 103 ans = (ans + dp[n][i][p])%MOD; 104 } 105 } 106 return ans; 107 } 108 }; 109 char buf[20]; 110 Trie ac; 111 int main() 112 { 113 for(int i=0;i<(1<<10);i++) 114 { 115 num[i] = 0; 116 for(int j = 0;j < 10;j++) 117 if(i & (1<<j)) 118 num[i]++; 119 } 120 while(scanf("%d%d%d",&n,&m,&k)==3) 121 { 122 if(n== 0 && m==0 &&k==0)break; 123 ac.init(); 124 for(int i = 0;i < m;i++) 125 { 126 scanf("%s",buf); 127 ac.insert(buf,i); 128 } 129 ac.build(); 130 printf("%d\n",ac.solve()); 131 } 132 return 0; 133 }