日志服务 最近在原有30+种数据采集渠道 基础上,新增MySQL Binlog、MySQL select等数据库方案,仍然主打快捷、实时、稳定、所见即所得的特点。
以下我们以用户登录数据库作为案例。公司内非常多的人员依赖于用户登录数据以及其衍生出来的相关数据:
- 老板要看大屏,每天UV、PV增长在哪里?
- 安全要监控登录是否异常,现在用户账户是否遭到集体攻击?
- 客户小二接到用户反馈,如何实时查询用户登录信息?
- BI需要分析用户行为,数据分析如何关联用户登录数据?
- 审计上门了,请把您3年前用户的登录数据拿出来吧?
接下来我们将演示如何在10分钟内手把手完成从binlog采集到查询、告警、搭建报表等全过程,满足各个老板们的需求:
环境准备
数据库
mysql类型数据库(使用mysql协议,例如RDS、DRDS等),数据库开启binlog,且配置binlog类型为ROW模式(RDS默认开启)
用户登录表结构
CREATE TABLE `user_login` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT 'id',
`login_time` datetime NOT NULL,
`login_ip` varchar(10) NOT NULL DEFAULT '',
`dev_type` varchar(10) NOT NULL,
`usr_id` int(11) unsigned NOT NULL,
`login_result` varchar(10) unsigned NOT NULL,
`login_err_times` int(10) unsigned NOT NULL,
`next_verify_type` varchar(10) NOT NULL,
PRIMARY KEY (`id`),
KEY `usr_id_index` (`usr_id`)
)复制代码
用户登录表中记录了登录id、登录时间、登录ip、登录设备、用户id、登录结果、连续登录失败次数、下一次校验类型等信息。其中登录验证规则如下:
用户登录时表的更新方案
- 方案1:
每次用户登录,在user_login
中新增一条记录,记录登录的ip、设备类型、时间信息 - 方案2:
考虑到用户数量非常多,如果每次用户登录都在user_login
中新增一条记录,数据量会非常大,所以每次用户登录时,只会根据usr_id
更新update
表中的数据
数据采集
安装logtail
根据文档安装logtail,确认版本号在0.16.0及以上。若低于0.16.0版本请根据文档提示升级到最新版本。
采集配置
{
"inputs": [
{
"type": "service_canal",
"detail": {
"Host": "************.mysql.rds.aliyuncs.com",
"User" : "root",
"Password": "*******",
"IncludeTables": [
"user_info\\.user_login"
]
}
}
]
}复制代码
建立索引
配置应用到机器组后,进入索引查询配置页面。在键值索引属性中配置以下索引项:
数据预览
应用配置1分钟后,点击预览可以看到状态数据已经采集上来(logtail的binlog采集会额外上传数据操作类型、GTID等信息):
__source__: 11.18.2346.187
__topic__:
_db_: user_info
_event_: row_update
_gtid_: 40684541-b23b-11e7-a198-6c92de20e4c5:32693
_host_: ****************mysql.rds.aliyuncs.com
_id_: 2132923
_table_: user_login
dev_type: web
id: 7234226
login_ip: 101.85.245.155
login_time: 1511855787
usr_id: 23568755
login_result: error
login_err_times: 5
next_verify_type: sms
old_dev_type: web
old_id: 7234226
old_login_ip: 101.85.245.155
old_login_time: 1511855781
old_usr_id: 23568755
old_login_result: error
old_login_err_times: 4
old_next_verify_type: id_code复制代码
自定义查询与分析
到这一步我们就可以满足客服和BI的需求了:查询/关联查询。例如:
- 用户反馈账号信息被篡改了,客服通过日志服务,查询该用户从上次登录到现在的登录信息:
login_id : 256525
,发现其中有一条登录日志;继续查询登录地址login_id : 256525 | select ip_tp_province(login_ip) as login_province, ip_tp_country(login_ip) as login_country
,发现是在国外登录的,因此很有可能该用户账号泄漏或被攻破了。 - 用户反馈自己的账号被限制登录了,客服通过日志服务,查询该用户限制登录前的相关登录信息:
login_id : 256525 | select ip_tp_province(login_ip) as login_province, login_result, count(1) as total group by (login_province,login_result) order by total desc limit 100
,发现该用户在多个省异常登录失败了很多次。
用户登录大盘
* | select count(distinct(usr_id)) as uv, count(1) as pv复制代码
* | select dev_type, count(1) as count group by dev_type复制代码
* | select count(1) as uv, count(distinct(usr_id)) as pv, from_unixtime( __time__ - __time__ % 300) as time group by __time__ - __time__ % 300 order by time limit 1440复制代码
统计地理位置分布
由于原始的数据中没有用户登录的地理位置分布信息,但我们可以通过ip地址定位到用户登录的省市,这里我们使用日志服务自带的ip地址转换函数(具体参见分析语法IP识别函数章节)
* | select ip_to_city(login_ip) as login_city, count(1) as count group by login_city order by count desc limit 10复制代码
* | select ip_tp_province(login_ip) as login_province, count(1) as count group by login_province order by count desc limit 100复制代码
用户登录大盘搭建
根据上一节的统计结果,我们搭建出了用户登录信息的仪表盘,可以向CEO汇报了。
异常登录告警
异常登录都会有误判的可能性,因此正常情况下会有少部分异常登录的情况,但异常登录占比要小于1%。这里我们为用户登录设置一个异常登录的告警:若当异常登录占总登录的1%则触发告警。
* | SELECT sum( CASE WHEN ip_tp_province(login_ip)!=ip_tp_province(old_login_ip) then 1 ELSE 0 end ) *1.0 / count(1) as abnormal_login_percentage复制代码
将该查询存为快速查询abnormal_login
,并设置告警。
配置项 | 内容 |
---|---|
报警规则名称 | abnormal_login_alarm |
快速查询名称 | abnormal_login |
数据查询时间(分钟) | 5 |
检查间隔(分钟) | 5 |
触发次数 | 1 |
字段名称 | abnormal_login_percentage |
比较符 | 大于 |
检查阈值 | 0.01 |
通知类型 | 通知中心 |
通知内容 | user abnormal login percentage exceed limit. |
数据备份
相关文章
使用EMR来进行mysqlbinlog日志准实时处理
如何基于MYSQL做实时计算
同志们有更多输入源的需求或其他问题请加钉钉群11775223联系:
扫我进群