php+分针和时针重合,时钟问题—两针重合

​    时钟问题—两针重合

含义:钟面上的分针追上时针与之重合。

这种追击,总是分针追时针,追击速度为分针每分钟前进的6度减去时针每分钟前进的0.5度,等于5.5度。

由于钟面是圆形,追击分为分针在后和在前两种情况:

(1)分针在后顺向追击(顺向夹角÷5.5)

=追击时间

(2)分针在前不能后退只能跨越“12”再继续追击反向角度:

(360-顺向夹角)÷5.5

=追击时间

例1:从时针指向“5”开始,经过多少分钟两针重合(分针追上时针)

解答:

分针: 0×6=0

时针:

5×30+0×0.5=150

(分针在后时针在前)

(150-0)÷5.5

=150÷5.5 =300/11(分)

≈27分钟

答:大约经过27分钟两针重合(此时钟面显示约5时27分)

例2:从3:40开始,经过多少分钟两针第一次重合(相遇、分针追上时针)

解答:

分针: 40×6=240

时针:3×30+40×0.5=110

240-110=130

(分针在前时针在后)

(360-130)÷5.5

=460/11(分)

≈42(分)

3时40分+42分=4时22分

答:大约经过42分钟两针重合(此时钟面显示约:4时22分)

例3:从6时20分开始,经过多少分钟两针重合(分针追上时针)

解答:

分针: 20×6=120

时针:

6×30+20×0.5=190

(分针在后时针在前)

(190-120)÷5.5

=70÷5.5 =140/11(分)

≈13(分)

13+20=33(分)

答:大约经过13分钟两针重合(此时钟面显示约6时33分)

例4:从1:20开始,经过多少分钟两针第一次重合?

解答:

分针: 20×6=120

时针:1×30+20×0.5=40

(分针在前时针在后)

120-40=80

(360-80)÷5.5

=560/11(分)

≈51(分)

1时20分+51分=2时11分

答:经过约51分钟两针第一次重合(此时钟面显示约为2时11分)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值