时钟问题—两针重合
含义:钟面上的分针追上时针与之重合。
这种追击,总是分针追时针,追击速度为分针每分钟前进的6度减去时针每分钟前进的0.5度,等于5.5度。
由于钟面是圆形,追击分为分针在后和在前两种情况:
(1)分针在后顺向追击(顺向夹角÷5.5)
=追击时间
(2)分针在前不能后退只能跨越“12”再继续追击反向角度:
(360-顺向夹角)÷5.5
=追击时间
例1:从时针指向“5”开始,经过多少分钟两针重合(分针追上时针)
解答:
分针: 0×6=0
时针:
5×30+0×0.5=150
(分针在后时针在前)
(150-0)÷5.5
=150÷5.5 =300/11(分)
≈27分钟
答:大约经过27分钟两针重合(此时钟面显示约5时27分)
例2:从3:40开始,经过多少分钟两针第一次重合(相遇、分针追上时针)
解答:
分针: 40×6=240
时针:3×30+40×0.5=110
240-110=130
(分针在前时针在后)
(360-130)÷5.5
=460/11(分)
≈42(分)
3时40分+42分=4时22分
答:大约经过42分钟两针重合(此时钟面显示约:4时22分)
例3:从6时20分开始,经过多少分钟两针重合(分针追上时针)
解答:
分针: 20×6=120
时针:
6×30+20×0.5=190
(分针在后时针在前)
(190-120)÷5.5
=70÷5.5 =140/11(分)
≈13(分)
13+20=33(分)
答:大约经过13分钟两针重合(此时钟面显示约6时33分)
例4:从1:20开始,经过多少分钟两针第一次重合?
解答:
分针: 20×6=120
时针:1×30+20×0.5=40
(分针在前时针在后)
120-40=80
(360-80)÷5.5
=560/11(分)
≈51(分)
1时20分+51分=2时11分
答:经过约51分钟两针第一次重合(此时钟面显示约为2时11分)