题目
一昼夜有多少时刻互换长短针后仍表示一个时间?如何求出这些时刻?
模型假设
- 长针指分针,短针指时针,钟表运行符合生活习惯。分针每一小时旋转一周,时针每12小时旋转一周。
- 钟表忽略秒针,且其是绝对理想的,即时针和分针的速度恒定不变,且变化是均匀且连续的。
- 一昼夜时间从某一天0:00开始到第二天0:00,但不包含第二天0:00这一时刻。
模型建立
不难看出,要使互换长短针后表示的时间不变,即当前时刻长短针在表盘上位置重合。
根据假设时针的速度 v h = 1 / 2 ° / min v_h=1/2 \degree/\min vh=1/2°/min,分针的速度为 v m = 6 ° / min v_m = 6\degree /\min vm=6°/min。显然0:00时刻是第一个分针和时针重合的时刻,设为 t 0 t_0 t0。再设 t n t_n tn为第 n n n个时针和分针完全重合的时刻,于是有:
( t n + 1 − t n ) ( v m − v h ) = 360 ° (t_{n+1} - t_{n})(v_m - v_h) = 360\degree (tn+1−tn)(vm−vh)=360°
模型求解
解法一
由以上递推关系可得
Δ t = t n + 1 − t n = 720 11 min \Delta t = t_{n+1} - t_{n} = \frac{720}{11}\min Δt=tn+1