【数学建模】时针和分针重合问题,以及所成任意角度问题

题目

一昼夜有多少时刻互换长短针后仍表示一个时间?如何求出这些时刻?

模型假设

  • 长针指分针,短针指时针,钟表运行符合生活习惯。分针每一小时旋转一周,时针每12小时旋转一周。
  • 钟表忽略秒针,且其是绝对理想的,即时针和分针的速度恒定不变,且变化是均匀且连续的。
  • 一昼夜时间从某一天0:00开始到第二天0:00,但不包含第二天0:00这一时刻。

模型建立

不难看出,要使互换长短针后表示的时间不变,即当前时刻长短针在表盘上位置重合。

根据假设时针的速度 v h = 1 / 2 ° / min ⁡ v_h=1/2 \degree/\min vh=1/2°/min,分针的速度为 v m = 6 ° / min ⁡ v_m = 6\degree /\min vm=6°/min。显然0:00时刻是第一个分针和时针重合的时刻,设为 t 0 t_0 t0。再设 t n t_n tn为第 n n n个时针和分针完全重合的时刻,于是有:
( t n + 1 − t n ) ( v m − v h ) = 360 ° (t_{n+1} - t_{n})(v_m - v_h) = 360\degree (tn+1tn)(vmvh)=360°

模型求解

解法一

由以上递推关系可得
Δ t = t n + 1 − t n = 720 11 min ⁡ \Delta t = t_{n+1} - t_{n} = \frac{720}{11}\min Δt=tn+1tn=11720min
即从0:00时刻开始,每隔 Δ t \Delta t Δt时间时针和分针就会重合一次。每12个小时(除了结束时刻),共有11次重合的时刻。即24小时内(一昼夜)共有22个重合的时刻。通过以上递推关系不难得出所有这些时刻。

解法二

假设某重合时刻为 h : m h:m h:m,其中 h h h表示为当前时刻的小时, m m m为该时刻的分钟。以表盘上12所在位置为起始位置,以顺时针方向为旋转的正方向,则分针旋转角度为 α m = 6 m \alpha_m = 6m αm=6m,由模型假设可知 v m = 12 v h v_m = 12v_h vm=12vh,因此时针旋转的角度 α h = 30 h + 6 m 12 \alpha_h = 30h + \frac{6m}{12} αh=30h+126m,当时针和分针重合时,有:
6 m = 30 h + 6 m 12 6m = 30h + \frac{6m}{12} 6m=30h+126m

m = 60 11 h m = \frac{60}{11}h m=1160h
在12个小时之内, h h h可能的取值为 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 0,1,2,3,4,5,6,7,8,9,10 0,1,2,3,4,5,6,7,8,9,10,因此24小时内共有22个重合的时刻。

模型推广

给定一个角度 α ∈ [ 0 , 180 ° ] \alpha \in [0, 180\degree] α[0,180°],一昼夜中有多少时刻令时针和分针之间的夹角为 α \alpha α

以表盘上12所在位置为起始位置,以顺时针方向为旋转的正方向,假设时针和分针相差角度为 α ( 0 < α < 180 ° ) \alpha(0 < \alpha < 180\degree) α(0<α<180°),则有 ∣ α h − α m ∣ = α |\alpha_h - \alpha_m| = \alpha αhαm=α ∣ α h − α m ∣ = 360 ° − α |\alpha_h - \alpha_m| = 360\degree -\alpha αhαm=360°α。我们借助重合的模型,设从0:00开始,第一个满足要求的时刻为 h ′ : m ′ h':m' h:m,且 α m − α h = α \alpha_m - \alpha_h = \alpha αmαh=α,因此
6 m ′ − 1 2 m ′ = 11 2 m ′ = α 6m' - \frac{1}{2}m' = \frac{11}{2}m'= \alpha 6m21m=211m=α
由此可以解得第一组 h ′ : m ′ h':m' h:m。由于一昼夜共有22个时刻发生重合,因此每个重合时刻都对应一组 h ′ : m ′ h':m' h:m。同理,设从0:00开始,第一个满足要求的时刻为 h ′ ′ : m ′ ′ h'':m'' h′′:m′′,且 α m − α h = 360 ° − α \alpha_m - \alpha_h = 360\degree - \alpha αmαh=360°α,因此
6 m ′ ′ − 1 2 m ′ ′ = 11 2 m ′ ′ = 360 ° − α 6m'' - \frac{1}{2}m'' = \frac{11}{2}m''= 360\degree - \alpha 6m′′21m′′=211m′′=360°α
同样每一个重合时刻都有一组对应的 h ′ ′ : m ′ ′ h'':m'' h′′:m′′。综上所述,共有44个时刻满足条件。

特别地,当 α = 180 ° \alpha = 180 \degree α=180°时,上述两种情况合并为一种,因此只有22个时刻满足条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值