题目
一昼夜有多少时刻互换长短针后仍表示一个时间?如何求出这些时刻?
模型假设
- 长针指分针,短针指时针,钟表运行符合生活习惯。分针每一小时旋转一周,时针每12小时旋转一周。
- 钟表忽略秒针,且其是绝对理想的,即时针和分针的速度恒定不变,且变化是均匀且连续的。
- 一昼夜时间从某一天0:00开始到第二天0:00,但不包含第二天0:00这一时刻。
模型建立
不难看出,要使互换长短针后表示的时间不变,即当前时刻长短针在表盘上位置重合。
根据假设时针的速度
v
h
=
1
/
2
°
/
min
v_h=1/2 \degree/\min
vh=1/2°/min,分针的速度为
v
m
=
6
°
/
min
v_m = 6\degree /\min
vm=6°/min。显然0:00时刻是第一个分针和时针重合的时刻,设为
t
0
t_0
t0。再设
t
n
t_n
tn为第
n
n
n个时针和分针完全重合的时刻,于是有:
(
t
n
+
1
−
t
n
)
(
v
m
−
v
h
)
=
360
°
(t_{n+1} - t_{n})(v_m - v_h) = 360\degree
(tn+1−tn)(vm−vh)=360°
模型求解
解法一
由以上递推关系可得
Δ
t
=
t
n
+
1
−
t
n
=
720
11
min
\Delta t = t_{n+1} - t_{n} = \frac{720}{11}\min
Δt=tn+1−tn=11720min
即从0:00时刻开始,每隔
Δ
t
\Delta t
Δt时间时针和分针就会重合一次。每12个小时(除了结束时刻),共有11次重合的时刻。即24小时内(一昼夜)共有22个重合的时刻。通过以上递推关系不难得出所有这些时刻。
解法二
假设某重合时刻为
h
:
m
h:m
h:m,其中
h
h
h表示为当前时刻的小时,
m
m
m为该时刻的分钟。以表盘上12所在位置为起始位置,以顺时针方向为旋转的正方向,则分针旋转角度为
α
m
=
6
m
\alpha_m = 6m
αm=6m,由模型假设可知
v
m
=
12
v
h
v_m = 12v_h
vm=12vh,因此时针旋转的角度
α
h
=
30
h
+
6
m
12
\alpha_h = 30h + \frac{6m}{12}
αh=30h+126m,当时针和分针重合时,有:
6
m
=
30
h
+
6
m
12
6m = 30h + \frac{6m}{12}
6m=30h+126m
即
m
=
60
11
h
m = \frac{60}{11}h
m=1160h
在12个小时之内,
h
h
h可能的取值为
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
0,1,2,3,4,5,6,7,8,9,10
0,1,2,3,4,5,6,7,8,9,10,因此24小时内共有22个重合的时刻。
模型推广
给定一个角度 α ∈ [ 0 , 180 ° ] \alpha \in [0, 180\degree] α∈[0,180°],一昼夜中有多少时刻令时针和分针之间的夹角为 α \alpha α?
以表盘上12所在位置为起始位置,以顺时针方向为旋转的正方向,假设时针和分针相差角度为
α
(
0
<
α
<
180
°
)
\alpha(0 < \alpha < 180\degree)
α(0<α<180°),则有
∣
α
h
−
α
m
∣
=
α
|\alpha_h - \alpha_m| = \alpha
∣αh−αm∣=α或
∣
α
h
−
α
m
∣
=
360
°
−
α
|\alpha_h - \alpha_m| = 360\degree -\alpha
∣αh−αm∣=360°−α。我们借助重合的模型,设从0:00开始,第一个满足要求的时刻为
h
′
:
m
′
h':m'
h′:m′,且
α
m
−
α
h
=
α
\alpha_m - \alpha_h = \alpha
αm−αh=α,因此
6
m
′
−
1
2
m
′
=
11
2
m
′
=
α
6m' - \frac{1}{2}m' = \frac{11}{2}m'= \alpha
6m′−21m′=211m′=α
由此可以解得第一组
h
′
:
m
′
h':m'
h′:m′。由于一昼夜共有22个时刻发生重合,因此每个重合时刻都对应一组
h
′
:
m
′
h':m'
h′:m′。同理,设从0:00开始,第一个满足要求的时刻为
h
′
′
:
m
′
′
h'':m''
h′′:m′′,且
α
m
−
α
h
=
360
°
−
α
\alpha_m - \alpha_h = 360\degree - \alpha
αm−αh=360°−α,因此
6
m
′
′
−
1
2
m
′
′
=
11
2
m
′
′
=
360
°
−
α
6m'' - \frac{1}{2}m'' = \frac{11}{2}m''= 360\degree - \alpha
6m′′−21m′′=211m′′=360°−α
同样每一个重合时刻都有一组对应的
h
′
′
:
m
′
′
h'':m''
h′′:m′′。综上所述,共有44个时刻满足条件。
特别地,当 α = 180 ° \alpha = 180 \degree α=180°时,上述两种情况合并为一种,因此只有22个时刻满足条件。