【数学建模】时针和分针重合问题,以及所成任意角度问题

题目

一昼夜有多少时刻互换长短针后仍表示一个时间?如何求出这些时刻?

模型假设

  • 长针指分针,短针指时针,钟表运行符合生活习惯。分针每一小时旋转一周,时针每12小时旋转一周。
  • 钟表忽略秒针,且其是绝对理想的,即时针和分针的速度恒定不变,且变化是均匀且连续的。
  • 一昼夜时间从某一天0:00开始到第二天0:00,但不包含第二天0:00这一时刻。

模型建立

不难看出,要使互换长短针后表示的时间不变,即当前时刻长短针在表盘上位置重合。

根据假设时针的速度 v h = 1 / 2 ° / min ⁡ v_h=1/2 \degree/\min vh=1/2°/min,分针的速度为 v m = 6 ° / min ⁡ v_m = 6\degree /\min vm=6°/min。显然0:00时刻是第一个分针和时针重合的时刻,设为 t 0 t_0 t0。再设 t n t_n tn为第 n n n个时针和分针完全重合的时刻,于是有:
( t n + 1 − t n ) ( v m − v h ) = 360 ° (t_{n+1} - t_{n})(v_m - v_h) = 360\degree (tn+1tn)(vmvh)=360°

模型求解

解法一

由以上递推关系可得
Δ t = t n + 1 − t n = 720 11 min ⁡ \Delta t = t_{n+1} - t_{n} = \frac{720}{11}\min Δt=tn+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值