相似三角形的学习中同学们有没有发现在这一章有一个幽灵一样的"因子"始终贯穿于其中,那就是平行线。
给你一个△ABC和平行于BC边的一条直线MN;你能用直线MN去截AB与AC边,使截得的三角形与原三角形相似吗?如果用直线MN去截AB与AC边所在直线呢?想一想,再看下图:
上面三种基本图形就是我们平时做题中常见平行线模型"(A型,X型,线束型),在研究与相似有关的几何证明、计算的过程中,常常需要通过相似三角形,研究两条线段之间的比例关系,或者转移线段或角。而有些时候,如果题目中没有这样平行线模型或不是十分明显。就需要我们自己构造通过添加平行线这一辅助线,构造相似三角形,进而证明所需的结论。
类型1 过特殊点作平行线
1.(2019•安徽中考题)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为( )
A.3.6B.4C.4.8D.5
2.(2019•凉山州中考题)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC=( )
A.1:2B.1:3C.1:4D.2:3