病人spark处理-元组和case class 对数据进行结构化

//39932,40902,1,?,1,?,1,1,1,1,1,TRUE

/*
前两个字段是整数型ID,代表记录中匹配的两个病人;
后面9个值,代表病人记录中不同字段(姓名,生日,地址)的匹配值
最后一个字段:布尔。代表该行病人记录是否匹配。
我们用‘,’切割一下
*/

val p = head(5).split(',')
//p: Array[String] = Array(36950, 42116, 1, ?, 1, 1, 1, 1, 1, 1, 1, TRUE)

/*隐士类型转换:当调用scala对象方法时,如果定义该对象的类型中找不到方法定义,Scala编译器就将该对象转换成响应的方法定义的类的实例*/
val id1 = p(0).toInt

需要对9个字段值进行转换,可以先用Scala Array 类的slice方法提取一部分元素,然后调用map函数,将slice中每个元素的类型从String转成Double

val raws=p.slice(2,11)
//raws: Array[String] = Array(1, ?, 1, 1, 1, 1, 1, 1, 1)

raws.map(s=>s.toDouble)
/*
出错,主要是因为遇到了?,所以我们写一个函数来对它进行处理
java.lang.NumberFormatException: For input string: "?"
*/

def toDouble(s:String)={
      if("?".equals(s)) Double.NaN else s.toDouble
      }
//toDouble: (s: String)Double

val sorce = raws.map(toDouble)
//sorce: Array[Double] = Array(1.0, NaN, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

结合所有,我们写一个方法,将之前的总结起来

def parse(line:String)={
 val pieces = line.split(',')
 val id1 = pieces(0).toInt
 val id2 = pieces(1).toInt
 val scores = pieces.slice(2,11).map(toDouble)
 val matched = pieces(11).toBoolean
 (id1,id2,scores,matched)
}
val tup = parse(line)

我们创建一个case class,方便取值:

case class MatchData(id1:Int,id2:Int,scores:Array[Double],matched:Boolean)

然后之后返回的时候,就不是元祖类型,而是MatchData类型;

def parse(line:String)={
 val pieces = line.split(',')
 val id1 = pieces(0).toInt
 val id2 = pieces(1).toInt
 val scores = pieces.slice(2,11).map(toDouble)
 val matched = pieces(11).toBoolean
 MatchData(id1,id2,scores,matched)
}
val tup = parse(line)

//这块的tup就已经是MatchData类型
//可以直接用过tup.id1 拿值了

接下来我们就可以调用函数。

val mds=head.filter(x=>!isHeader(x)).map(x=>parse(x))

//解析集群数据,再noheader上调用map函数:

val parsed = noheader.map(line=>parse(line))

//如果需要缓存,可以直接使用缓存,spark有自己的缓存机制
parsed.cache()

但是数据不一定在一台机器上,所以我们需要聚合,对其聚合时,数据传输的效率肯定是担心的一个问题。

val group = mds.groupBy(md=>md.matched)

/*
得到grouped变量中的值以后,就可以通过在grouped上调用mapValues方法得到计数。
*/
group.mapValues(x=>x.size).foreach(println)

创建直方图

连续变量的概要统计,如以下代码:

val stats =(0 until 9).map(i=>{
 parsed.map(md=>md.scores(i)).filter(!isNaN(_)).stats()
})

 

转载于:https://my.oschina.net/u/4009325/blog/2962414

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值