已知两切线和半径画圆弧和圆

本文详细介绍了如何使用FILLET命令在CAD软件中绘制圆弧和圆,包括设置半径、选择对象等关键操作。通过找到圆心并应用圆弧绘制技巧,可以轻松创建所需的几何形状。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已知两切线和半径,如何画圆?

用FILLET命令

然后选择半径,输入半径;

然后选择对象,即选择两条切线。

确认即可画得该圆弧。

若要画成圆,则利用圆弧找到圆心,就可以用圆心和半径画圆。

转载于:https://www.cnblogs.com/fwy-walking/p/4095331.html

### 使用 MATLAB 编写程序绘制给定条件下的顺时针圆弧 为了根据给定的圆弧起点、终点以及起点处的切线方向来绘制顺时针圆弧,可以采用以下方法: #### 计算中心点半径 首先计算圆心位置 `C` 圆弧半径 `R`。假设已知起点 `P1(x1,y1)`、终点 `P2(x2,y2)` 及其对应的切线方向角 `θ1`。 通过几何关系可得: \[ C_x = \frac{x_1+x_2}{2}+\frac{(y_2-y_1)\cdot\sin(\theta_1)}{2(1-\cos(\theta_1))}, \quad C_y=\frac{y_1+y_2}{2}-\frac{(x_2-x_1)\cdot\sin(\theta_1)}{2(1-\cos(\theta_1))}\] 接着半径 \( R=|CP_1|\),即点间距离公式应用于此场景下[^1]。 #### 构建角度范围并生成数据点 定义从初始到终止的角度变化区间 `[startAngle,endAngle]` 并创建一系列均匀分布的数据点用于描绘平滑曲线。注意这里要确保按照顺时针顺序增加角度值。 对于每一对 `(r, θ)` ,转换成笛卡尔坐标系中的对应点 `(X,Y)` 来准备绘图所需的数据集。 ```matlab function plotArc(startPoint, endPoint, theta1) % startPoint: [x1 y1], 圆弧起点坐标 % endPoint: [x2 y2], 圆弧终点坐标 % theta1: 起始点处的切线方向(单位:度) % 将输入参数转为列向量形式处理 P1 = startPoint(:); P2 = endPoint(:); % 角度由度数转化为弧度 th1_rad = deg2rad(theta1); % 中心点坐标的计算 cx = mean([P1(1); P2(1)]) + ... ((P2(2)-P1(2))*sind(th1_rad)/(2*(1-cosd(th1_rad)))); cy = mean([P1(2); P2(2)]) - ... ((P2(1)-P1(1))*sind(th1_rad)/(2*(1-cosd(th1_rad)))); % 半径长度 r = norm(P1-[cx;cy]); % 定义角度序列 angles = linspace(rad2deg(pi-th1_rad), rad2deg(-pi+th1_rad), 100)'; % 过滤掉不符合端点约束的角度 validAnglesIdx = find((angles >= min(abs(rad2deg(asin((P2(2)-cy)/r)), abs(rad2deg(acos((P2(1)-cx)/r)))))) &... (angles <= max(abs(rad2deg(asin((P2(2)-cy)/r))), abs(rad2deg(acos((P2(1)-cx)/r))))))); filteredAngles = angles(validAnglesIdx); % 创建极坐标表示法下的 X Y 数据矩阵 [X, Y] = pol2cart(deg2rad(filteredAngles), ones(size(filteredAngles)).*r)+repmat([cx; cy]', numel(filteredAngles), 1); figure; polarplot(deg2rad(filteredAngles)', sqrt(sum(([X';Y']-[cx,cy]).^2, 2)'), '-b'); end ``` 此函数接受三个参数作为输入——圆弧的起点、终点及其在起点处的方向角,并据此构建出一条顺时针旋转的圆弧路径,在极坐标图表上显示出来[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值