IBM SPSS Modeler Logistic回归分析详解

Logistic回归虽然叫法上叫回归,但实际上该算法是分类算法

一、变量选择的方法

SPSS Modeler Logistic模型节点的方法表述上与统计学有部分不一致,且二项式提供的方法与多项式提供的方法不一样。

变量选择的依据:残差平方和(SSE)减少

203253_LQkF_2326984.png203306_8rsO_2326984.png

(1)进入法(目测在统计学中无此方法)将所有自变量纳入模型方程
(2)前进法(统计学术语:向前选择forward selection)是逐渐往模型方程中增加变量
(3)后退法(统计学术语:向后剔除backward elimination)是将所有变量纳入模型方程,然后一步步剔除变量。
(4)逐步法(统计学术语:逐步回归stepwise regression)初始模型时,不含任何变量(除常量外),每一步对添加或者删除变量
(5)后退逐步法(目测在统计学中无此方法)初始模型将所有变量纳入方程中,每一步剔除变量,但同时对删除的变量重新评估已经剔除的字段是否对模型有利

转载于:https://my.oschina.net/iamchenli/blog/877890

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值