大学物理实验 考点总结

本文总结了大学物理实验中的误差分析和测量不确定度处理,包括误差分类、测量结果评价、正态分布的随机误差特性、不确定度合成与测量结果表达。详细介绍了直接和间接测量的不确定度求解,以及数据处理方法如作图法、图解法、逐差法和最小二乘法。此外,还涵盖了实验报告中涉及的思考题,如示波器使用、惠斯通电桥测量、开尔文电桥、霍尔元件测磁场等实验的要点。
摘要由CSDN通过智能技术生成

大物实验 考点总结

误差

测量误差可以用绝对误差,也可以用相对误差表示:
\[绝对误差=测量结果-真值\]
\[相对误差=\cfrac{绝对误差}{真值}\]

误差分类:

(1)系统误差(2)随机误差(3)粗大误差

测量结果的评价

评价测量结果,反应测量误差大小,常用到精密度、正确度和准确度3个概念。
精密度反映随机误差大小的程度,它是对测量结果的重复性的评价。精密度高是指测量的重复性好,各次测量值的分布密集,随机误差小。但是,精密度不能反映系统误差的大小。精密度反映测量值离散程度
正确度反映系统误差大小的程度。正确度高是指测量数据的算术平均值偏离真值较小,测量的系统误差小。但是正确度不能确定数据分散的情况,即不能反映随机误差的大小。
准确度反映系统误差与随机误差综合大小的程度。准确度高是指测量结果既精密又正确,即随机误差与系统误差均小。

常用的测量方法有异号法、交换法、替代法、对称法

服从正态分布的随机误差

服从正态分布的随机误差具有下列特点:
(1)单峰性——绝对值小的误差比绝对值大的误差出现的概率答;
(2)对称性——大小相等而符号相反的误差出现的概率相同;
(3)有界性——在一定的测量条件下,误差的绝对值不超过一定的限度;
(4)抵偿性——误差的算术平均值随测量次数\(n\)的增加而趋于零。

当测量次数无穷多或足够多时,测量值的误差分布才接近正态分布,但是当测量次数较少时(例如,少于10次,物理实验教学中一般取\(n=6\sim 10\)次),测量值的误差分布将明显偏离正态分布,而遵从\(t\)分布,又称为学生分布\(t\)分布曲线与正态分布曲线的形状类似,但是\(t\)分布曲线的峰值低于正态分布;而且\(t\)分布曲线上部较窄,下部较宽。

为什么置信概率取0.95
不确定度的\(A\)类(采用统计方法评定的\(A\)类不确定度)分量用\(u_A(x)\)表示。物理实验中\(u_A(x)\)一般用多次测量平均值的标准偏差\(s(\overline{x})\)\(t\)因子\(t_p\)的乘积来估算,即\[u_A(x)=t_ps(\overline x)\]
式中,\(t\)因子\(t_p\)是与测量次数\(n\)和对应的置信概率\(p\)有关,当置信概率为\(p=0.95\),测量次数\(n=6\)时,我们可以查到\(t_{0.95}/\sqrt{n} \approx 1\),则有\[u_A(x)=s(x)\]
即在置信概率为\(0.95\)的前提下,测量次数\(n=6\)\(A\)类不确定度可以直接用测量值的标准偏差\(s(x)\)估算。
因此,在未加说明时,普遍采取置信概率\(p=0.95\)

测量不确定度和结果的表达

不确定度由两类不确定度合成
  1. A类不确定度:采用统计方法评定的不确定度,即对多次测量的数据进行处理而得到的不确定度,以\(u_A(x)\)表示。
  2. B类不确定度:采用非统计方法评定的不确定度,即\(u_A(x)\),常常用仪器误差\(\Delta_仪\)来表示。
    (一般来说这个仪器误差会给出,所以不需要背)
合成不确定度与测量结果的表达

下式就是不确定度的合成公式:
\[u(x)=\sqrt{u^2_A(x)+u^2_B(x)}\tag {1.1}\]
完整的数据处理结果,标准形式如下:
\[\begin{cases}x=\overline {x} \pm u(x) \\\\ u_r=\cfrac{u(x)}{\overline {x}} \times 100\% \end{cases}\tag{1.2}\]
式中,\(\overline x\)为多次测量的平均值,\(u(x)\)为合成不确定度,\(u_r\)是两者的比值,称为测量的相对不确定度。

不确定度的求解
直接测量不确定度的求解过程

1.单次测量
因为我们的实验过程都是指定的,并不需要我们自己来构思实验过程,所以对于测量单次或者多次无需判断,这部分不在考点内。
当遇到测量结果是单次测量时,我们的不确定度只有\(u_B(x)\)一项。它的取值有两种,一种是仪器标定的最大误差限(暂时没遇到,如果有应该会在型号说明那把),第二种是实验室给出的最大允许误差\(u(x)=u_B(x)=\Delta_仪\)。如果两种都有,取较大者。
2.多次测量
多次测量时,不确定度一般按照下列过程进行计算:

  • 求多次的测量数据的平均值\(\overline{x}=\sum \frac{x_i}{n}\);
  • 修正已知系统误差,得到测量值,例如,已知螺旋测微仪的零点误差为\(d_0\),修正后的测量结果为\(d=d_测-d_0\)
  • 用贝塞尔公式计算标准误差\[s(x)=\sqrt{\cfrac{\sum_{i=1}^{n} (x_i-\overline{x})^2}{n-1}}\]
  • 根据仪器标定的最大误差限,或实验室给出的最大允许误差,确定\(u_B(x)\)
  • 根据$u_A(x)和u_B(x)求合成不确定度 $\(u(x)=\sqrt{u^2_A(x)+u^2_B(x)}\)
  • 计算相对不确定度\(u_r(x)=\cfrac{u(x)}{\overline {x}} \times 100 \%\);
  • 给出测量结果\[\begin{cases}x=\overline{x}\pm u(x) \\\\ u_r=\cfrac{u(x)}{\overline x}\times 100 \% \end{cases}\]
间接测量的不确定度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值