node爬虫
初入前端,刚刚接触node,对于耳闻已久的node爬虫非常神往,所以有了这篇文章, 项目代码在文章末尾
需求
抓取天涯论坛重庆地区板块的文章列表信息。
使用工具
- node.js
- superagent(客户端请求代理模块)
- cheerio(为服务器特别定制的,快速、灵活、实施的jQuery核心实现)
安装并使用cheerio,superagent模块
安装
npm install superagent cheerio --save
在项目中引入cheerio,superagent
const superagent = require('superagent')
const cheerio = require('cheerio')
指定需要抓取的域名
const mainUrl = 'http://bbs.tianya.cn' //天涯论坛主域名
let url = '/list-45-1.shtml' //重庆区域域名
请求数据
superagent.get(mainUrl + url).end(function (err, res) {
// 抛错拦截
if (err) {
return
throw Error(err)
}
console.log(res)
}
分析页面结构
对页面内容进行分析,提取对我们需要的内容
以下图片是页面信息
- 我们需要的列表在class为mt5的div下。
- 整个网页有多个mt5,继续向下找。
- 每一栏信息在('.mt5 table tbody tr')下。
-
调用cheerio选取('.mt5 table tbody tr')
let $ = cheerio.load(res.text) $('.mt5 table tbody tr').each((index, item)=>{ //这里是每一项的信息 })
- 找到了信息,下面对找到的信息进行解析
解析数据
找到需要解析的数据,对数据进行解析,保存我们需要的数据
let $ = cheerio.load(res.text)
let data = [] //存储抓去到的数据
$('.mt5 table tbody tr').each((index, item) => {
let _this = $(item)
//根据页面判断是否是文章
if ($(_this.children()[0]).hasClass('td-title')) {
//对数据进行存储
let obj
let title = $(_this.find('.td-title')).find('span').next().text()
// let text = $(_this.find('a')[0]).text() //另一种选择器
let type = $(_this.find('.td-title')).find('.face').attr('title')
let goto = $(_this.find('.td-title')).find('span').next().attr('href')
let author = $(_this.children()[1]).text()
let point = $(_this.children()[2]).text()
let time = $(_this.children()[3]).text()
obj = {
title: title,
type: type,
url: mainUrl + goto,
author: author,
point: point,
time: time
}
if (obj.title != "") {
//判断如果有内容,则推送到data中
data.push(obj)
}
}
})
存储数据到本地
此时需要把data中保存的数据存到想要保存的文件中需要用到node的fs模块
1.引入fs模块
const fs = require('fs')
2.存储数据到本地
在根目录下创建data文件夹
fs.writeFile(__dirname + '/data/articleLists.json', JSON.stringify({
status: 0,
data: data
}), function (err) {
if (err) {
console.log(err)
} else {
console.log("写入文章列表完成")
}
})
现在爬虫会把爬到的数据存储到本地了
ok,到这里我们的爬虫已经完成了,接下来我们需要对它进行优化
让爬虫更聪明
现在我们的爬虫只能爬取当前页的信息,我们来改一下,让它也能翻页
分析翻页按钮,天涯论坛的列表也的下一页按钮中有一个a标签,里边的url加上之前我们记录的mainUrl就是下一页的标签。所以,在爬虫爬取完本页的数据后,让爬虫向下一页的链接发一个新的请求就可以继续爬去了。
//单次读取后,找到下一页的链接,继续抓取下一页的数据
let nextPage = $('.mt5').next().find('.short-pages-2 .links')
nextPage.children().each((index, item) => {
if ($(item).text() === '下一页') {
let url = $(item).attr("href")
getData(url) //刚才我们请求数据的方法,命名为这个函数
}
})
现在,爬虫读取完当前页数据后就会继续爬取下一页的数据。
完成代码
最后我还增加了一个页码,每一页数据,单独进行记录。下面是完整的代码
const superagent = require('superagent')
const cheerio = require('cheerio')
const fs = require('fs')
const mainUrl = 'http://bbs.tianya.cn' //天涯论坛主域名
let url = '/list-45-1.shtml' //重庆区域域名
let index = 1 //记录页码数
//发送请求获取页面资源方法
let getData = (url) => {
// 使用superagent请求页面数据
superagent.get(mainUrl + url).end(function (err, res) {
// 抛错拦截
if (err) {
return
throw Error(err)
}
// 请求数据后使用cheerio解析数据
let $ = cheerio.load(res.text)
let data = [] //存储抓去到的数据
$('.mt5 table tbody tr').each((index, item) => {
let _this = $(item)
//根据页面判断是否是文章
if ($(_this.children()[0]).hasClass('td-title')) {
//对数据进行存储
let obj
let title = $(_this.find('.td-title')).find('span').next().text()
// let text = $(_this.find('a')[0]).text() //另一种选择器
let type = $(_this.find('.td-title')).find('.face').attr('title')
let goto = $(_this.find('.td-title')).find('span').next().attr('href')
let author = $(_this.children()[1]).text()
let point = $(_this.children()[2]).text()
let time = $(_this.children()[3]).text()
obj = {
title: title,
type: type,
url: mainUrl + goto,
author: author,
point: point,
time: time
}
if (obj.title != "") {
//判断如果有内容,则推送到data中
data.push(obj)
}
}
})
if (data.length > 0) { //判断data中是否有内容
//使用fs模块对data中的数据进行储存,也可以使用数据库进行操作
fs.writeFile(__dirname + '/data/articleLists' + index + '.json', JSON.stringify({
status: 0,
data: data
}), function (err) {
if (err) {
console.log(err)
} else {
console.log("写入文章列表完成, 当前页码:", index)
index++
}
})
}
//单次读取后,找到下一页的链接,继续抓取下一页的数据
let nextPage = $('.mt5').next().find('.short-pages-2 .links')
nextPage.children().each((index, item) => {
if ($(item).text() === '下一页') {
let url = $(item).attr("href")
getData(url)
}
})
})
}
//初次执行数据抓取
getData(url)
好了本次node爬虫快速入门文章到这里就结束了,但是这个爬虫还有很多地方需要完善,以后我会为大家带来更详细的爬虫教程