hdu 4408 Minimum Spanning Tree

 

Problem Description
XXX is very interested in algorithm. After learning the Prim algorithm and Kruskal algorithm of minimum spanning tree, XXX finds that there might be multiple solutions. Given an undirected weighted graph with n (1<=n<=100) vertexes and m (0<=m<=1000) edges, he wants to know the number of minimum spanning trees in the graph.
 

 

Input
There are no more than 15 cases. The input ends by 0 0 0.
For each case, the first line begins with three integers --- the above mentioned n, m, and p. The meaning of p will be explained later. Each the following m lines contains three integers u, v, w (1<=w<=10), which describes that there is an edge weighted w between vertex u and vertex v( all vertex are numbered for 1 to n) . It is guaranteed that there are no multiple edges and no loops in the graph.
 

 

Output
For each test case, output a single integer in one line representing the number of different minimum spanning trees in the graph.
The answer may be quite large. You just need to calculate the remainder of the answer when divided by p (1<=p<=1000000000). p is above mentioned, appears in the first line of each test case.

 

Sample Input
5 10 12
2 5 3
2 4 2
3 1 3
3 4 2
1 2 3
5 4 3
5 1 3
4 1 1
5 3 3
3 2 3
0 0 0
 
Sample Output
4
 
Source
 
 
题意:求最小生成树的数量
 
矩阵树定理
 
回想 Kruskal算法,从小到大枚举边
当边权相等时,边随意排序
那么当权值为k的边全部枚举完后,点的联通情况F是固定的
也就是说权值都为k的边无论以什么顺序枚举,得到的生成树的形态不一,但联通情况F'和F相同
如果将加入最小生成树的 权值为1——k-1的边 和 对应的点 压缩成一个点,
所有权值为k 的边 的联通情况 是独立的
根据乘法原理
我们可以枚举权值k
计算此时形成F的方案数 
具体来说就是 枚举权值为k的边形成的连通块,用矩阵树定理算出每种连通块的方案数
累乘就是权值为k的边形成F的方案数
最后将所有权值为k的边的答案累乘
 
注意 并查集不要路径压缩
因为矩阵树定理需要每个点的度数
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,mod;
int fa[101],ka[101];
struct node
{
    int u,v,w;
}e[1001];
int a[101][101];
bool vis[101];
vector<int>g[101];
long long ans,C[101][101],t;
bool cmp(node p,node q)
{
    return p.w<q.w;
}
int find(int i,int *f) { return f[i]==i ? i : find(f[i],f); }
bool init()
{
    int u,v;
    scanf("%d%d%d",&n,&m,&mod);
    if(!n) return false;
    for(int i=1;i<=m;i++) scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
    return true;
}
long long det(int h)
{
    long long s=1;
    for(int i=0;i<h;i++)
    {
        for(int j=i+1;j<h;j++)
         while(C[j][i])
         {
             t=C[i][i]/C[j][i];
             for(int k=i;k<h;k++) C[i][k]=(C[i][k]-C[j][k]*t+mod)%mod;
             for(int k=i;k<h;k++) swap(C[i][k],C[j][k]);
             s=-s;
         }
        s=s*C[i][i]%mod;
        if(!s) return 0;
    }
    return (s+mod)%mod;    
}
void matrix_tree()
{
    int len,u,v;
    for(int i=1;i<=n;i++)
        if(vis[i])
        {
            g[find(i,ka)].push_back(i);
            vis[i]=false;
        }
    for(int i=1;i<=n;i++)
        if(g[i].size())
        {
            memset(C,0,sizeof(C));
            len=g[i].size();
            for(int j=0;j<len;j++)
                for(int k=j+1;k<len;k++)
                {
                    u=g[i][j]; v=g[i][k];
                    if(a[u][v])
                    {
                        C[k][j]=(C[j][k]-=a[u][v]);
                        C[k][k]+=a[u][v]; C[j][j]+=a[u][v];
                    }
                }
            ans=ans*det(g[i].size()-1)%mod;
            for(int j=0;j<len;j++) fa[g[i][j]]=i;
        }
    for(int i=1;i<=n;i++) 
    {
        g[i].clear();
        ka[i]=find(i,fa);
    }
}
void solve()
{
    ans=1;
    int u,v;
    memset(a,0,sizeof(a));
    for(int i=1;i<=n;i++) fa[i]=ka[i]=i;
    sort(e+1,e+m+1,cmp);
    for(int i=1;i<=m+1;i++)
    {
        if(e[i].w!=e[i-1].w && i!=1 || i==m+1) matrix_tree();
        u=find(e[i].u,fa); v=find(e[i].v,fa);
        if(u!=v)
        {
            vis[u]=vis[v]=true;
            ka[find(u,ka)]=find(v,ka);
            a[u][v]++; a[v][u]++;
        }
    }
    bool flag=true;
    for(int i=1;i<n && flag;i++) 
    if(find(i,fa)!=find(i+1,fa)) flag=false;
    printf("%lld\n",flag ? ans%mod : 0);
}
int main()
{
    while(init()) solve();
}

 

 
 

转载于:https://www.cnblogs.com/TheRoadToTheGold/p/7420333.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值