桥牌笔记:创造挤牌条件

在桥牌游戏中,当南家主打4H时,面临西家连打黑桃并被东家将吃的局面,解决梅花失张的策略在于利用方块33分布的可能性,通过南家出梅花Q迫使西家扑上梅花K,从而创造挤牌条件。最终,通过清完将牌、止于南家并引出梅花Q,西家垫去梅花2后,只需观察梅花J是否出现即可完成定约。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bridge Master 2000 Skill Level 4 Series C Deal 12

南主打4H。

满手只有3个失墩,看来完成这个4H相当轻松。

image

 

可惜西家连打3轮黑桃,第3轮被东家将吃,第4轮打出方块J,这样梅花上的失张得想办法解决了。看来只能寄希望于方块3-3分布了,但根据概率,42分布的可能性更大,从东家回方块J的情况表明,东家很可能是JT9x这样的4张,西家争叫1S,通常会拿梅花K,这样西家守住梅花,东家守住方块,看来定约非宕不可。

image

思路:

1)因为方块33分布定约没问题,所以重点思考方块42分布的解决方案

2)梅花上用飞牌不能多出一墩,所以只有挤牌可能会多创造出一墩来

3)东家拿4张方块,但西家拿梅花K,并不符合同一人防守2门花色的挤牌条件,只能思考有没有办法创造出挤牌的条件来

4)从南家出梅花Q,西家必扑上梅花K,此时梅花J成为防守南家梅花10的关键张,而梅花J有可能在东家,这样就创造出来了挤牌条件。当然,如果西家拿着KJxx那就肯定打不成。(我在一开始没有想到这里,是因为发现不满足挤牌条件,就把希望寄托在东家拿梅花K上了,但根据叫牌看西家争叫10点的可能性会更大。

5)所以方块拿住后,清完将牌,止于南家,引梅花Q,西K北A,最后3张的残局如下,南出最后一张将牌,北家垫去梅花2,只需观察梅花J有没有出来即可。因为此时东家在方块和梅花二门花色上受挤,如果没有看到东家出梅花J,则放心拿完方块完成定约。

image

变分模态分解(Variational Mode Decomposition, VMD)是一种强大的非线性、无参数信号处理技术,专门用于复杂非平稳信号的分析与分解。它由Eckart Dietz和Herbert Krim于2011年提出,主要针对传统傅立叶变换在处理非平稳信号时的不足。VMD的核心思想是将复杂信号分解为一系列模态函数(即固有模态函数,IMFs),每个IMF具有独特的频率成分和局部特性。这一过程与小波分析或经验模态分解(EMD)类似,但VMD通过变分优化框架显著提升了分解的稳定性和准确性。 在MATLAB环境中实现VMD,可以帮助我们更好地理解和应用这一技术。其核心算法主要包括以下步骤:首先进行初始化,设定模态数并为每个模态分配初始频率估计;接着采用交替最小二乘法,通过交替最小化残差平方和以及模态频率的离散时间傅立叶变换(DTFT)约束,更新每个模态函数和中心频率;最后通过迭代优化,在每次迭代中优化所有IMF的幅度和相位,直至满足停止条件(如达到预设迭代次数或残差平方和小于阈值)。 MATLAB中的VMD实现通常包括以下部分:数据预处理,如对原始信号进行归一化或去除直流偏置,以简化后续处理;定义VMD结构,设置模态数、迭代次数和约束参数等;VMD算法主体,包含初始化、交替最小二乘法和迭代优化过程;以及后处理,对分解结果进行评估和可视化,例如计算每个模态的频谱特性,绘制IMF的时频分布图。如果提供了一个包含VMD算法的压缩包文件,其中的“VMD”可能是MATLAB代码文件或完整的项目文件夹,可能包含主程序、函数库、示例数据和结果可视化脚本。通过运行这些代码,可以直观地看到VMD如何将复杂信号分解为独立模态,并理解每个模态的物理意义。 VMD在多个领域具有广泛的应用,包括信号处理(如声学、振动、生物医学信号分析)、图像处理(如图像去噪、特征提取)、金融时间序列分析(识
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值