[LeetCode]Sliding Window Maximum

Sliding Window Maximum

Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.

For example,
Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.

Window position                Max
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

Therefore, return the max sliding window as [3,3,5,5,6,7].

Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.

Follow up:
Could you solve it in linear time?

分析

这种针对sliding window里的元素的题目往往都用Queue解决。

这道题是求window内的最大值,比较brute force的方法就是维护一个Priority Queue, 然后每次找最大值,随着window移动不断删除和增加相应元素。但是这样做的话时间复杂度会相对较高,因为对于Priority Queue而言,删除指定object的复杂度是O(n)。

那么我们可以考虑设计一个MaxQueue, 移动window过程中不断更新递减的最大值。这种思路比较好的实现方法是用Deque数据结构, queue里存着以当前值index结尾依次递减的值的index。当window里有新元素增加的时候,我们更新queue里的index,更新方法是从尾部不断pop出比新加入进来的元素小的元素的index。

类似的这种sliding window的题还有很多,比如求window里的平均值,同样用queue也可以解决。

复杂度

time: O(n), space: O(n)

代码

public class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        if (k <= 0 || nums == null)
            return nums;
            
        int[] res = new int[nums.length - k + 1];
        Deque<Integer> dq = new ArrayDeque<>();
        int j = 0;
        for (int i = 0; i < nums.length; i++) {
            
            // 删除window外的元素的index
            if (!dq.isEmpty() && dq.peek() < i - k + 1) {
                dq.remove();
            }
            
            // 更新queue里的index,使得queue中index对应值依次递减
            while (!dq.isEmpty() && nums[dq.peekLast()] < nums[i]) {
                dq.removeLast();
            }
            dq.add(i);
            
            // 取得当前window里的最大值
            if (i >= k - 1)
                res[j++] = nums[dq.peek()];
        } 
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值