题目描述
小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100。但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数)。没多久,他就得到另一组连续正数和为100的序列:18,19,20,21,22。现在把问题交给你,你能不能也很快的找出所有和为S的连续正数序列? Good Luck!
输出描述:
输出所有和为S的连续正数序列。序列内按照从小至大的顺序,序列间按照开始数字从小到大的顺序
此题的思路是:设定两个指针,一个指向第一个数,一个指向最后一个数,在此之前需要设定第一个数和最后一个数的值,由于是正数序列,所以可以把第一个数设为1,最后一个数为2(因为是要求是连续正数序列,最后不可能和第一个数重合)。下一步就是不断改变第一个数和最后一个数的值,如果从第一个数到最后一个数的和刚好是要求的和,那么把所有的数都添加到一个序列中;如果大于要求的和,则说明从第一个数到最后一个数之间的范围太大,因此减小范围,需要把第一个数的值加1,同时把当前和减去原来的第一个数的值;如果小于要求的和,说明范围太小,因此把最后一个数加1,同时把当前的和加上改变之后的最后一个数的值。这样,不断修改第一个数和最后一个数的值,就能确定所有连续正数序列的和等于S的序列了。
基于上述思路,实现的代码如下(已被牛客AC):
package com.rhwayfun.offer;
import java.util.ArrayList;
public class FindTotalContinuousSequence {
public ArrayList<ArrayList<Integer> > FindContinuousSequence(int sum) {
ArrayList<ArrayList<Integer>> sqList = new ArrayList<ArrayList<Integer>>();
if(sum < 3) return sqList;
int small = 1;
int big = 2;
int curSum = small + big;
//设置middle变量的原因在于如果在当前总和小于sum的情况下,
//small在增加到sum的一半的过程中肯定会大于sum
int middle = (1 + sum) / 2;
while(small < middle){
ArrayList<Integer> sq = new ArrayList<Integer>();
if(curSum == sum){
for (int i = small; i <= big; i++) {
sq.add(i);
}
}
while(curSum > sum && small < middle){
curSum -= small;
small++;
if(curSum == sum){
for (int i = small; i <= big; i++) {
sq.add(i);
}
}
}
if(sq.size() > 0) sqList.add(sq);;
big++;
curSum += big;
}
return sqList;
}
public static void main(String[] args) {
ArrayList<ArrayList<Integer>> list = new FindTotalContinuousSequence().FindContinuousSequence(15);
for (ArrayList<Integer> arrayList : list) {
System.out.println(arrayList);
}
}
}