#TensorFlow Python API 依赖 Python 2.7 版本 #Python 程序生成了一些三维数据, 然后用一个平面拟合它 import tensorflow as tf import numpy as np # 使用 NumPy 生成假数据(phony data), 总共 100 个点 x_data = np.float32(np.random.rand(2, 100)) # 随机输入numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1]中。 Size = (2*100) y_data = np.dot([0.100, 0.200], x_data) + 0.300 #np.dot()矩阵相乘 # 构造一个线性模型 b = tf.Variable(tf.zeros([1])) #tf.zeros(shape, dtype=tf.float32, name=None) W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))#返回1*2的矩阵,产生于-1和1之间,产生的值是均匀分布的 y = tf.matmul(W, x_data) + b # 最小化方差 loss = tf.reduce_mean(tf.square(y - y_data)) # tf.reduce_mean(x)表示计算全局平均值;但又因为tensor不止一维,所以 #tf.reduce_mean(x, axis=0)表示计算y轴平均值; #tf.reduce_mean(x, axis=1)表示计算x轴平均值; optimizer = tf.train.GradientDescentOptimizer(0.5)# 梯度下降算法,学习率为0.5 train = optimizer.minimize(loss)#最小化对象是loss # 初始化变量,下面这几步必做 init = tf.initialize_all_variables() # 启动图 (graph) sess = tf.Session() sess.run(init) # 拟合平面 # xrange 用法与 range 完全相同,所不同的是生成的不是一个list对象,而是一个生成器。输出的时候list(xrange(0,201))才输出的是序列,否则输出一个list类型 for step in xrange(0, 201): sess.run(train) if step % 20 == 0: print(step, sess.run(W), sess.run(b)) # 得到最佳拟合结果 W: [[0.100 0.200]], b: [0.300]