Tensorflow学习笔记(一)拟合线性平面 逐句解析


#TensorFlow Python API 依赖 Python 2.7 版本

#Python 程序生成了一些三维数据, 然后用一个平面拟合它
import tensorflow as tf
import numpy as np

# 使用 NumPy 生成假数据(phony data), 总共 100 个点
x_data = np.float32(np.random.rand(2, 100)) # 随机输入numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1]中。 Size = (2*100)
y_data = np.dot([0.100, 0.200], x_data) + 0.300 #np.dot()矩阵相乘

# 构造一个线性模型
b = tf.Variable(tf.zeros([1])) #tf.zeros(shape, dtype=tf.float32, name=None)
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))#返回1*2的矩阵,产生于-1和1之间,产生的值是均匀分布的
y = tf.matmul(W, x_data) + b

# 最小化方差
loss = tf.reduce_mean(tf.square(y - y_data))
# tf.reduce_mean(x)表示计算全局平均值;但又因为tensor不止一维,所以
#tf.reduce_mean(x, axis=0)表示计算y轴平均值;
#tf.reduce_mean(x, axis=1)表示计算x轴平均值;
optimizer = tf.train.GradientDescentOptimizer(0.5)# 梯度下降算法,学习率为0.5
train = optimizer.minimize(loss)#最小化对象是loss

# 初始化变量,下面这几步必做
init = tf.initialize_all_variables()
# 启动图 (graph)
sess = tf.Session()
sess.run(init)
# 拟合平面
# xrange 用法与 range 完全相同,所不同的是生成的不是一个list对象,而是一个生成器。输出的时候list(xrange(0,201))才输出的是序列,否则输出一个list类型
for step in xrange(0, 201):
    sess.run(train)
if step % 20 == 0:
    print(step, sess.run(W), sess.run(b))
# 得到最佳拟合结果 W: [[0.100 0.200]], b: [0.300]



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值