题目:
时间限制 : 1 Sec
内存限制 : 128 Mb
提交 : 317
解决 : 99
题目描述
给出两个整数n和k,(2≤n≤70000,1≤k≤n),求出1,2,3,…,n中连续k个数的和,并计算出和为平方数的个数。
例如n=10,k=3。在1,2,…,10中,连续3个数的和有
1+2+3=6
2+3+4=9
3+4+5=12
4+5+6=15
5+6+7=18
6+7+8=21
7+8+9=24
8+9+10=27
其中和为平方数的仅有9,因为9=3×3。
输入
n,k两个整数。
输出
一个整数,即1,2,…,n中连续k个数的和为平方数的个数。
样例输入
10 3
样例输出
1
方法:
1、每个数都可以表示为a+1 a+2 a+3……(每个测试点的1都为1+2+3……)
2、每次+k,就是在每个数底下+1.
3、判断+k后的值,如果是平方数就计数器+1.
标程:
#include<bits/stdc++.h>
using namespace std;
int n,k,ans,z;
int main()
{
cin>>n>>k;
for (int i=1;i<=k;i++)z+=i;
for (int i=1;i<=n-k;i++)
{
z+=k;
if (floor(sqrt(z))==sqrt(z))ans+=1;
}
cout<<ans<<endl;
return 0;
}
using namespace std;
int n,k,ans,z;
int main()
{
cin>>n>>k;
for (int i=1;i<=k;i++)z+=i;
for (int i=1;i<=n-k;i++)
{
z+=k;
if (floor(sqrt(z))==sqrt(z))ans+=1;
}
cout<<ans<<endl;
return 0;
}