- 博客(1136)
- 资源 (35)
- 收藏
- 关注
原创 2023年终总结(脚踏实地,仰望星空)
2023年,经历非常多的大事情,找工作、实习、研究生毕业、堂哥结婚、大姐买车、申博、读博、参加马拉松,有幸这一年全家人平平安安,在稳步前进。算是折腾的一年,杭州、赣州、武汉、澳门、珠海、遵义来回跑。完成了学业、工作、赚钱、陪家人、旅行、部分书单(12/20)、博客10W粉丝(12W/10W)、提高网球水平的目标。今年是我上大学以来,在家陪家人最长时间的一年了,和家人开心的度过了几个月。在我的世界观里,三件事是我生命中的三大支柱,家庭、爱情和事业,我在专心并且用心做好这三件事。
2024-01-04 20:50:05
2516
4
原创 站在博士生的视角回顾脚踏实地,仰望星空的十三年学习生涯
缘起是高中的好基友,现在在高中当班主任,他让我写一个自己的学习历程,给他们班开一个班会。坐下来,思绪涌上心头,回想过去很多苦很累泪。从小学开始已经读了19年的书了,现在还要4年书要读 ,我一直乐在其中。回想曾经大学兼职,做过社会底层的工作,有做地推、发小广告、和一帮社会小混混一起发传单、上班打过骚扰电话、搬过小黄车、站过街、干过推销,辛苦一天,赚个70左右。这些社会底层的工作,让我知道学习是社会里最简单最有价值的事情了,从未厌倦学习。
2023-09-11 22:58:48
1418
14
原创 2022年终总结(脚踏实地,仰望星空)
2022年焦虑和快乐是这一年中最大的两种情绪了。焦虑主要是因为心里的三块石头,从年初就开始悬着。第一块石头,科研论文录用,第二个石头,拿到国奖,第三个石头是拿到满意的offer。目前只剩下最后一块石头没有落地,今年研三明年六月份毕业,从今年七月份开始都在找工作,各种碰壁,面对各种困难,看到周围的朋友在年末都拿到了心仪的offer,还是很心慌很焦虑的。快乐的原因是,在这一年有很多值得感动、感恩,值得回忆的事情发生。首先是遇到一个心爱的女孩,精神世界有了共鸣,一起出去玩了很多次。
2022-12-26 00:15:25
2988
16
原创 2021的年终总结(仰望星空、脚踏实地)
目录回忆录总结语2022未来期回忆录过去听了很多逆袭的故事,喝了许多的心灵鸡汤,知道了好多让我打鸡血 的方法,准备让自己精力充沛的去迎接新的挑战各种欲望和目标一直的充斥着我的大脑,我想要发论文、我想要赢得比赛、我想要有健硕的身材、我想要拿奖学金、我想要身体健康、我想要经济独立、我想要去自驾旅行、我想生活得更自在。。。然而手机和电脑的陪伴却伴随着各种诱惑不停的向我投来,B站的推荐、知乎的热榜、微博的热搜、王者峡谷的召唤、刺激战场的刚枪。这些廉价而低成本的快乐,让我欲罢不能,我一边排斥,一边真香,我清
2021-12-30 13:04:51
3338
16
原创 回忆我的过去一年2020年考研以及研究生规划
一、启发一天都在优哉游哉的看文献,完全没有写效率,突然在知乎上看到了一篇文章,深刻的触发了我。研究生的开学,怎么与想象中完全不一样啊……突然回忆起过去考研准备的一年,为着自己的一个目标日夜奋斗,从未终止过一天的学习,我无愧自己过去的青春,也对未来充满希望和激情。二、回忆考研一年(多图警告)1.一个不想简单的活着的想法告诉我,必须考研,在 2018年寒假,我大三,和爸妈商量了,寒假我不回去了,留在学校附近住,准备考研。天津的冬天很冷,都是有暖气的,但是暖气不热,我坐在靠近暖气的小桌子边,还须用猫窝捂
2020-08-08 11:55:23
7994
37
原创 Ubuntu 系统安装 Gym-Fetch-v2以及通过游戏Xbox手柄控制机械臂采集演示数据
gym-fetch-v2是一个扩展OpenAI Gym Fetch机器人环境的Python包,提供7个新增操作任务。相比同类环境,它具有更快的初始化速度、更短的回合长度(50步)和更好的工程实现。安装过程包括系统依赖、MuJoCo210、虚拟环境和相关Python包的配置。项目提供完整安装脚本和测试程序,支持通过Xbox控制器或脚本方式采集演示数据,可保存为npz或hdf5格式。该环境兼容gymnasium新版本,适合机器人操作任务的快速训练和演示采集。
2026-01-13 16:55:19
226
原创 ThinkStation PGX 与 RTX 4090、A10、3090深度学习性能对比测试报告
本次测试对比了ThinkStation PGX(ARM+GB10)、RTX 4090、A10和RTX 3090四种GPU平台的深度学习性能。结果显示:RTX 4090在矩阵乘法、卷积运算和训练速度上全面领先,相比3090快1.1-2.4倍;RTX 3090性价比最优,性能接近4090但成本低30-40%;PGX虽计算性能垫底,但119.6GB超大显存使其成为千亿参数模型训练的独特选择;A10则适合企业级部署。建议:追求性能选4090,平衡预算选3090,超大模型需求选PGX,企业应用选A10。
2025-12-13 10:00:24
837
原创 ThinkStation PGX 与 RTX 4090 深度学习性能对比测试报告
深度学习工作站性能对比测试摘要 本次测试对比了基于ARM架构的ThinkStation PGX工作站与x86平台的RTX 4090系统在深度学习任务中的表现。测试结果显示:RTX 4090在计算性能上全面领先,矩阵乘法快2.76倍,卷积运算快3.33倍,训练速度快2.85倍,主要得益于其先进的Ada架构和高显存带宽。而PGX工作站则展现出显著的内存优势,显存容量达119.6GB(是4090的5倍),系统内存128GB,更适合超大模型训练和大规模数据处理。 实际应用建议:RTX 4090更适合快速迭代的中小规
2025-12-12 21:42:26
1099
3
原创 ThinkStation PGX Ubuntu aarch64架构上使用Docker 配置amd64架构镜像的深度学习环境并使用Vscode开发
联想ThinkStation PGX桌面AI工作站搭载NVIDIA Grace Blackwell芯片,提供强大AI算力但面临ARM架构兼容性问题。本文介绍通过Docker解决环境配置难题:先在x86服务器配置环境并导出镜像,后在PGX上安装Docker并加载镜像;使用QEMU模拟器实现跨架构运行;详细说明VSCode开发环境搭建方法,包括目录挂载和容器插件配置。这套方案有效克服了ARM架构的软件兼容限制,使开发者能充分利用PGX的AI计算能力。
2025-12-12 17:56:17
757
原创 Ubuntu aarch64\arm64系统安装vscode
摘要: 在Ubuntu arm64系统上安装VSCode的三种方法: 推荐APT仓库安装:添加微软官方源后通过sudo apt install code安装,支持自动更新。 手动DEB包安装:下载arm64版deb文件后使用dpkg安装,适合网络受限环境。 Snap简易安装:执行sudo snap install code --classic一键完成,但系统集成性较弱。 安装前需通过uname -m确认系统架构为aarch64。APT方式需配置GPG密钥和仓库源,确保安全更新。(149字)
2025-12-11 11:46:51
733
原创 ubuntu 不同系统架构(aarch64\arm64\x86_64)安装miniconda以及配置pip镜像
ubuntu不同的架构安装miniconda详细步骤
2025-12-11 10:52:41
401
原创 Ubuntu aarch64 (arm64)架构开发板的Linux系统安装拼音输入法
Linux系统安装Google拼音输入法指南 本文介绍了在ARM64架构Linux系统上安装Google拼音输入法的步骤。首先通过uname -a命令确认系统架构,确认搜狗拼音不兼容后,提供了两种安装Google拼音的方案:完整安装或仅安装核心组件。详细说明了配置过程,包括添加中文语言支持、安装fcitx输入法框架以及系统重启等必要步骤。特别提醒当键盘输入法系统中缺少fcitx选项时的解决方法,确保用户能顺利完成输入法配置。
2025-12-11 10:32:02
363
原创 git与github协作开发的常用命令
本文介绍了Git配置及仓库操作流程:1)安装Git并注册GitHub账号,配置SSH密钥认证;2)设置Git用户信息,生成并添加SSH公钥到GitHub;3)初始化本地仓库并关联远程私有仓库(推荐SSH方式);4)拉取远程代码、提交本地修改并推送到GitHub。关键命令包括git config配置身份、ssh-keygen生成密钥、git pull/push同步代码等,提供了完整的Git基础操作指南。
2025-12-10 11:48:50
364
原创 云服务器Ubuntu安装isaacsim和Isaac Lab的详细步骤
本文摘要了三组Linux系统配置命令:1) DNS设置命令,备份原配置并改为Google DNS;2) Python包安装命令,通过NVIDIA官方源和阿里云镜像安装IsaacSim等CUDA相关包;3) CUDA组件手动安装流程,包含cublas、cudnn等核心组件的下载和安装命令,以及PyTorch的CUDA版本安装。这些命令主要涉及系统网络配置和深度学习环境搭建。
2025-12-06 12:12:50
460
原创 Ubuntu系统配置gymnasium-robotics环境
本文介绍了MuJoCo物理引擎的安装配置及Gymnasium-Robotics环境的测试方法。首先详细说明了MuJoCo的下载安装步骤,包括创建专用目录、解压文件、配置环境变量等过程,并提供了验证安装是否成功的测试命令。接着介绍了Gymnasium-Robotics相关环境的安装方法及系统依赖项的配置。最后提供了两个测试程序:一个带可视化界面的本地测试程序和一个适用于服务器的无可视化测试程序,后者包含环境状态检查、随机动作执行及渲染模式测试等功能,确保环境配置正确并能正常运行。
2025-12-04 09:37:30
423
原创 Ubuntu system solve error:aplay: set_params:1377: Channels count non available
这是音频设备配置问题。
2025-12-02 17:48:29
186
原创 Elasticsearch BM25 检索器连接问题解决方案
摘要:SafeRAG项目使用BM25检索器时遇到Elasticsearch连接问题,主要原因为协议不匹配(HTTP vs HTTPS)、缺少身份验证和客户端类型错误。解决方案包括:1)改用AsyncElasticsearch异步客户端;2)启用HTTPS协议并配置认证;3)禁用证书验证便于开发;4)通过es_client参数传入配置。修改后运行验证命令确认问题解决,关键点是正确配置异步客户端、使用HTTPS协议和身份验证参数。(149字)
2025-11-20 11:14:54
498
原创 【HOPE】Goole最新持续学习大模型算法Nested Learning The Illusion of Deep Learning Architectures
本文提出“嵌套学习”(Nested Learning,NL)范式,把模型、优化器与记忆统一看作多级、并行、带独立“上下文流”的优化问题;每个组件按自身更新频率分层,靠梯度下降将局部误差(Local Surprise Signal)压缩为键-值关联记忆。基于该视角,作者把动量/Adam等优化器显式扩展成可学习的深度记忆模块,并设计出自修改序列模型 HOPE:其连续记忆系统为不同频率的 MLP 链,每层只在对应时间尺度更新,从而在不增加总参数的前提下实现长程持续学习与更高阶的上下文内学习。
2025-11-09 20:52:17
2375
1
原创 【大模型RAG安全基准】安装和使用SafaRAG框架
SafeRAG是一个针对中文场景的检索增强生成(RAG)安全评估框架,系统化分析RAG流程中的安全风险。该框架包含检索器(支持向量、关键词及混合检索)、过滤器(NLI/SKR)、生成器(支持GPT/DeepSeek等API模型和Qwen/Baichuan等本地模型)三大核心模块,通过四种攻击任务(噪声注入、上下文冲突等)测试系统抗干扰能力。评估系统采用多指标(BLEU、BERTScore等)和多线程并行处理,需配合Milvus/Elasticsearch数据库运行。安装需配置Python环境及相应模型文件,
2025-11-06 16:02:08
752
原创 【一个开发文档即可自动开发整个项目教程】Windows下配置Deepcode+通义千问
使用DeepCode和通义前问搭建自己的代码开发生成Agent
2025-11-03 16:05:37
1747
原创 局域网下Windows系统远程连接Ubuntu系统桌面
本文介绍了NoMachine远程桌面软件在Windows和Ubuntu系统下的安装与配置方法。首先需要在官网下载对应系统的安装包,Windows直接运行exe安装,Ubuntu使用dpkg命令安装。安装完成后需重启/注销系统。配置时需注意该软件仅适用于局域网环境,需记录Ubuntu端的nx开头的IP地址信息。Windows端通过添加连接,输入Ubuntu的IP地址即可建立远程连接。安装过程简单,适合在不同操作系统间进行局域网远程桌面访问。
2025-11-02 09:48:48
732
原创 强化学习SAC和TQC训练gymnasium-robotics中的机械臂任务FetchReach-v4、FetchPush-v4、FetchSlide-v4、FetchPickAndPlace-v4
本文介绍了在Ubuntu 20.04上实现FetchReach机器人任务训练的完整流程。首先详细说明了环境配置步骤,包括MuJoCo210、gymnasium-robotics、PyTorch和stable-baselines3等必要组件的安装方法。然后提供了一个基于SAC算法的训练脚本,该脚本支持三种操作模式:1)从头训练模型,2)继续训练现有模型,3)加载最佳模型进行推理演示。代码实现了训练进度保存、中断恢复、性能评估等功能,并特别加入了自定义的回调函数来保存replay buffer,确保训练过程的安
2025-10-30 21:33:11
483
原创 Ubuntu 20.04上安装MuJoCo 210
本文介绍了在Linux系统上安装MuJoCo 210及其Python接口的完整流程。首先下载MuJoCo本体并解压到~/.mujoco目录,配置环境变量后通过运行示例模型验证安装。然后创建Python虚拟环境,安装系统依赖库后通过pip安装兼容版本的mujoco-py。最后提供验证方法和常见问题解决方案,包括GLEW初始化错误处理、Cython编译问题等。整个安装过程强调环境隔离和版本兼容性,确保MuJoCo及其Python接口能正常工作。
2025-10-24 16:12:51
850
原创 自定义数据集在单张RTX 4090上通过LoRA微调机械臂PI0模型的完整指南
基于Mujoco仿真平台robosuite采集的自定义数据集在单张RTX 4090上通过LoRA微调PI0模型的完整指南
2025-10-16 17:40:55
1128
2
原创 运行pi0报错:ValueError: An incorrect transformer version is used, please create an issue on
摘要 安装LeRobot后运行PI0微调脚本时出现"transformer版本不正确"错误。原因是PI0策略依赖PaliGemma和SigLIP视觉编码器的特定实现,需要专用版本的transformers库。解决方案有两种:(1)直接安装指定分支的transformers: pip install git+https://github.com/huggingface/transformers.git@fix/lerobot_openpi;(2)使用pip install -e "
2025-10-15 14:27:38
944
原创 基于Robosuite和Robomimic采集mujoco平台的机械臂数据微调预训练PI0模型,实现快速训练机械臂任务
本文介绍了将Robosuite采集的机械臂操作数据转换为LeRobot兼容格式的完整流程。首先通过Robosuite和Robomimic工具采集人类演示数据,生成HDF5文件。然后详细说明了数据转换步骤:1)安装必要环境;2)使用脚本收集演示数据;3)将原始数据转换为Robomimic格式;4)提取包含图像观测的完整数据集。最后重点介绍了如何将HDF5格式转换为LeRobot数据集格式,包括定义数据集特征、创建空数据集、逐帧添加数据等关键步骤。该流程实现了从仿真平台数据采集到适配VLA模型训练所需格式的完整
2025-10-15 14:11:09
1533
2
原创 ubuntu20.04安全的安装可穿墙的远程软件parsec
Ubuntu 20.04安装Parsec时若出现视频解码器错误(Error Code -10),需直接卸载重装而非修复,否则可能导致系统桌面丢失。正确安装步骤包括:1)更新OpenSSL安全补丁;2)从官网下载最新版Parsec;3)将清华源替换为阿里云镜像(避免403错误);4)执行安装命令。特别注意:修复错误操作可能引发TTY终端界面故障且难以恢复。
2025-10-13 11:38:11
672
原创 基于Robosuite和Robomimic采集mujoco平台的机械臂数据采用Lora微调预训练RT_1模型,实现快速训练机械臂任务
本文介绍了一种基于Robosuite和Robomimic工具采集MuJoCo平台机械臂数据,并采用LoRA微调预训练RT-1模型的方法。主要内容包括:1)数据采集的两种方案,包括使用现成示例数据和自定义采集;2)详细的数据采集步骤,涉及环境搭建、演示数据生成和格式转换;3)数据读取与解析方法,通过Python代码提取机械臂的观测、动作、奖励等关键信息。该方法能快速训练机械臂完成特定任务,为机器人学习提供高效解决方案。
2025-10-13 11:01:30
557
原创 介绍终身机器人学习的数据集LIBERO
LIBERO是一个用于研究**多任务和终身机器人学习中知识迁移**的综合基准测试平台,LIBERO是基于robosuite框架构建的。它专注于机器人操作任务,这些任务需要两类知识:
2025-10-11 10:53:37
3396
2
原创 【完整强化学习Ubuntu环境安装教程】下载ubunt20.04系统iso镜像、制作系统盘、安装系统、更换pip镜像、安装cuda、cudnn、pytorch、gymnasium、
本文提供了Ubuntu系统安装与深度学习环境配置的完整指南。主要内容包括:1)使用Rufus工具制作Ubuntu 20.04系统盘;2)系统安装步骤;3)中文输入法安装;4)Miniconda安装与配置;5)pip镜像源设置;6)CUDA和cuDNN安装;7)PyTorch、Gymnasium、Stable-Baselines3等深度学习框架安装;8)MuJoCo物理引擎和Robosuite机器人仿真环境配置;9)Robomimic模仿学习算法库安装。该指南详细介绍了从系统安装到深度学习开发环境搭建的全过程
2025-10-10 11:45:54
1398
原创 Robosuite有哪些机械臂任务?
摘要: robosuite支持多种单机械臂操作任务,主要包括:方块提升(Lift)、堆叠(Stack)、拾取放置(PickPlace)及其变体(牛奶、面包等特定物品)、螺母组装(NutAssembly)、开门(Door)、桌面擦拭(Wipe)和工具悬挂(ToolHang)。PickPlace任务可通过命令行运行不同物品的单独操作,如PickPlaceMilk、PickPlaceBread等。这些任务覆盖了从基础抓取到复杂装配等多种机器人操作场景。(149字)
2025-10-09 11:39:44
301
原创 robosuite采集数据到robomimic训练模型的详细步骤
本文介绍了从robosuite采集数据到robomimic训练模型的完整流程。首先通过键盘控制采集演示数据并保存为HDF5格式,然后进行数据格式转换、观测提取等预处理步骤,最后使用行为克隆等算法训练策略模型。关键步骤包括:1)使用键盘采集原始演示数据;2)转换数据格式为robomimic兼容结构;3)提取低维或图像观测;4)配置训练参数并启动模型训练。整个过程实现了从机器人操作数据采集到模仿学习模型训练的完整链路。
2025-10-09 10:49:44
1272
1
原创 在Robosuite中如何使用Xbox游戏手柄操控mujoco仿真中的机械臂?
摘要: Robosuite机器人模拟框架支持键盘和SpaceMouse,但不原生支持Xbox手柄。本文介绍了如何通过修改collect_human_demonstrations.py脚本和添加xbox.py设备类,实现手柄控制机械臂数据采集。修改包括:1) 创建Xbox设备类,通过pygame映射摇杆/按钮到6-DoF控制;2) 调整主脚本以支持新设备。该方案使手柄能更直观地控制机械臂运动(左摇杆控制XY,触发器控制Z轴,右摇杆控制旋转),并通过按钮实现抓取/重置功能,提升了人机交互体验。最终可通过--de
2025-10-09 10:21:25
1077
原创 键盘控制robosuite项目中的mujoco仿真机械臂
键盘控制机械臂通过Keyboard类实现,继承自Device基类,使用pynput库监听输入。提供6自由度控制:方向键控制x-y平面移动,./;键控制z轴,o/p等键控制旋转,空格键控制夹爪。支持灵敏度调节和增量/绝对控制模式。需注意渲染窗口必须处于活动状态,macOS可能需要root权限。键盘控制适合快速测试,但建议使用SpaceMouse等设备进行更精确操作。
2025-10-09 08:40:41
761
原创 如何将wsl安装的Ubuntu系统从C盘移到D盘?
WSL迁移至D盘操作指南 通过官方WSL命令可安全将C盘WSL镜像迁移至D盘,适用于WSL 2发行版。主要步骤为: 准备工作:确认发行版名称并停止运行,在D盘创建目标文件夹 执行迁移: 导出当前系统为压缩包 注销原发行版 将压缩包导入D盘新位置 删除临时压缩包 后续设置:验证迁移、设置默认用户(需注意可执行文件名称对应发行版版本) 整个过程通过"导出-导入"机制实现数据安全迁移,可有效释放C盘空间。
2025-10-04 10:02:45
1252
原创 【windows11下流畅强化学习】Windows 11安装WSL、ubuntu系统配置CUDA
在Windows系统中通过WSL(Windows Subsystem for Linux)安装Ubuntu子系统,无需双系统或虚拟机即可实现高效开发。步骤如下: 安装WSL及Ubuntu:使用wsl --install命令完成基础配置。 配置开发环境:安装Miniconda管理Python环境,并通过阿里云镜像加速pip包安装。 CUDA Toolkit安装:在WSL-Ubuntu中仅安装cuda-toolkit(避免驱动冲突),配置环境变量后验证nvcc版本。 PyTorch安装:根据CUDA版本
2025-10-04 09:57:46
588
原创 解决git clone报错Permission denied (publickey). fatal Could not read from remote repository
解决git clone报错"Permission denied (publickey)"问题,主要是SSH密钥配置问题。首先检查本地是否有SSH密钥(~/.ssh目录),若无则用ssh-keygen生成新密钥对。将公钥(.pub文件内容)添加到GitHub账户的SSH设置中。启动SSH代理并加载私钥,最后用ssh -T git@github.com测试连接。成功认证后即可正常使用git clone命令。
2025-10-04 09:48:06
606
学习汇报布谷鸟CS+模拟退火SA+人工蜂群ABC算法PPT
2020-07-11
汇报CNN+RNN+LSTM神经网络模型介绍PPT
2020-07-21
Matlab 2019b for Linux、Mac、Windows 安装包网盘链接以及安装方法.rtf
2020-09-29
MATLAB赋能信号处理--基于深度学习的信号调制识别源码.zip
2020-08-29
使用机器学习和深度学习处理信号基础知识.pptx
2020-08-02
全国大学生数学建模竞赛论文模板.doc
2020-11-08
遗传算法(GA)思维导图.zip
2020-07-11
遗传算法(Genetic Algorithm)MATLAB案例详细解析代码以及PPT.zip
2020-07-10
汇报遗传算法(Genetic Algorithm)PPT
2020-07-10
人工蜂群算法MATLAB详细注释.zip
2020-07-10
现代数字信号处理研究生习题答案.zip
2020-10-31
OFDM仿真(包含瑞利信道+高斯信道+信道估计)
2020-08-29
OFDM存储IQ信号代码、OFDM的帧关系图、代码流程图.zip
2020-08-16
科研论文的构思、规划和写作PPT--中南大帅词俊
2020-10-17
OFDM仿真代码+OFDM原理和技术介绍PPT.zip
2020-08-09
按网络结构划分所有神经网络分类PDF.zip
2020-10-26
模拟退火算法解决函数优化以及旅行商问题详细注释代码.zip
2020-07-10
【考试版】光波电子学.pdf
2021-07-01
2022年第十一届认证杯数学中国数学建模国际赛(小美赛)赛题
2022-12-04
MATLAB实现的冰壶游戏仿真
2022-07-09
gcc4.8版本的rpm相关依赖包.zip
2020-11-24
TOPSIS法(优劣解距离法)例子源码和拓展资料
2020-11-09
思维导图-无线信道模型分类和对应建模方法.zip
2020-11-27
2021"认证杯"中国数学建模赛题(中英文)题目和数据.zip
2021-12-04
图像处理-基于Zernike矩的亚像素边缘检测算法-MATLAB实现.zip
2021-11-29
IC_TI National Semiconductor_LMC555CN_NOPB.zip
2021-05-11
【删除的思维导图】无线信道模型分类和对应建模方法详解
2020-11-16
思维导图-知识产权之专利权.zip
2020-12-13
知识产权之专利权选择+判断+论述题题库.zip
2020-12-14
知识产权选择题题库.zip
2020-12-13
【2021 数学建模-某肿瘤疾病诊疗的经济学分析】30页论文+代码+赛题数据.zip
2021-10-21
IC_TI National Semiconductor_LMC555CN.zip
2021-05-11
思维导图--海上信道系统知识体系详解.zip
2020-12-02
知识产权之专利权总共十章的文字内容可打印.zip
2020-12-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅