HDU 4857 (反向拓扑排序 + 优先队列)



意:有N个人,M个优先级a,b表示a优先于b。而且每一个人有个编号的优先级。输出顺序。


思路来自:与PKU3687一样

在主要的拓扑排序的基础上又添加了一个要求:编号最小的节点要尽量排在前面;在满足上一个条件的基础上,编号第二小的节点要尽量排在前面;在满足前两个条件的基础上,编号第三小的节点要尽量排在前面……依此类推。(注意,这和字典序是两回事,不能够混淆。

如图 1 所看到的,满足要求的拓扑序应该是:6 4 1 3 9 2 5 7 8 0。



图 1 一个拓扑排序的样例

一般来说。在一个有向无环图中,用 BFS 进行拓扑排序是比較常见的做法,如算法 1 所看到的。

可是它不一定能得到本题要求的拓扑序。

1. 把全部入度为 0 的节点放进队列 Q

2. WHILE: Q 不是空队列

3.     从 Q 中取出队列首元素 a,把 a 加入到答案的尾部

4.     FOR:全部从 a 出发的边 a → b

5.         把 b 的入度减 1。

假设 b 的入度变为 0,则把 b 放进队列 Q。

算法 1 用 BFS 进行拓扑排序

为了解决本问题。以下让我来探究一下拓扑序的一些性质。以图 1 为例,节点 0 毫无疑问排在最后。除了节点 0 以外,有三条互相平行的路径:6 → 4 → 1、 3 → 9 → 2 和 5 → 7 → 8

一条路径上的各个节点的先后关系都是不能改变的,比方路径 6 → 4 → 1 上的三个节点在拓扑序中,一定是 6 在最前,1 在最后。

可是,互相平行的各条路径,在总的拓扑序中随意交错都是合法的。比方。以下都是图 1 的合法拓扑序:

6 4 1 3 9 2 5 7 8 0、 3 6 9 4 5 1 7 8 2 0、 5 6 4 7 3 8 1 9 2 0、 3 5 6 4 1 7 9 2 8 0、 6 5 7 8 4 3 9 2 1 0。

怎么才干找出题目要求的拓扑序呢?在这里,我想用字典序最先的拓扑序来引出这个算法。

算法 2 能够求出字典序最先的拓扑序。

1. 把全部入度为 0 的节点放进优先队列 PQ

2. WHILE: PQ 不是空队列

3.     从 PQ 中取出编号最小的元素 a。把 a 加入到答案的尾部

4.     FOR:全部从 a 出发的边 a → b

5.        把 b 的入度减 1。假设 b 的入度变为 0,则把 b 放进优先队列PQ。

算法 2 求出字典序最先的拓扑序

可见,算法 2 和算法 1 基本一样,仅仅是把队列改成了优先队列。用它求出的图 1 的字典序最先的拓扑序为:3 5 6 4 1 7 8 9 2 0。可是这显然不是本题要求的答案,由于节点 1 的位置还不够靠前。

算法 2 能够算是一个贪心算法,每一步都找编号最小的节点。可是对于图 1 中的三条路径,头的编号比較小的。不一定要先出队列。正确的步骤应该例如以下:

  1. 节点 0 的位置是铁定在最后的,不用考虑。仅仅考虑剩下的三条路径。
  2. 先找编号最小的。节点 1。把它和它所在的路径中位于它前面的节点所有拿出来。眼下的答案是 6 4 1,这样。 节点 1 就尽量靠前了。
  3. 再找剩下的节点中编号最小的,节点 2。把它和它所在的路径中位于它前面的节点所有拿出来。眼下的答案是 6 4 1 3 9 2 ,这样,节点 2 就尽量靠前了。

  4. 仅仅剩下一条路径了,仅仅能依次把当中的节点拿出来。最后答案就是 6 4 1 3 9 2 5 7 8 0。

显然,算法 2 的贪心策略对于这个问题是不可行的。不能着眼于每条路径的头,而是要找编号最小的节点在哪条路径上,优先把这条路径拿出来。但问题在于,在 BFS 的过程中,我们仅仅能看到每条路径的头,看不到后面的节点。这该怎么办呢?

让我们换个角度想一想,节点 3 和 6。应该是 6 先出队列,由于节点 1 在 6 的后面。这和节点 3 和 6 的编号大小没有不论什么关系。

可是。再看另外两条路径的尾部,节点 2 和 8,能够肯定地说,2 一定先出队列,由于它们后面都没有别的节点了。这个时候全然以这两个节点本身的编号大小决定顺序。归纳起来就是说,对于若干条平行的路径,小的头部不一定排在前面。可是大的尾部一定排在后面。于是,就有了算法 3。

1. 把全部出度为 0 的节点放进优先队列 PQ
2. WHILE: PQ 不是空队列
3.     从 PQ 中取出编号最大的元素 a。把 a 加入到答案的头部。


4.     FOR:全部指向 a 的边 b → a
5.        把 b 的出度减 1。假设 b 的出度变为 0。则把 b 放进优先队列PQ。

算法 3 求出本题目要求的拓扑序




#include<cstdio>
#include<stdlib.h>
#include<string.h>
#include<string>
#include<map>
#include<cmath>
#include<iostream>
#include <queue>
#include <stack>
#include<algorithm>
#include<set>
using namespace std;
#define INF 1e8
#define eps 1e-8
#define LL long long 
#define maxn 505
#define mod  1000000007 
vector<int>G[30003];
int out[30003];
int n,m,a[30003];
void toposort()
{
	priority_queue<int>q;
	int len=n;
	for(int i=1;i<=n;i++)
		if(out[i]==0)
			q.push(i);
	while(!q.empty())
	{
		int tmp=q.top();
		a[len--]=tmp;
		q.pop();
		for(int i=0;i<G[tmp].size();i++)
		{
			out[G[tmp][i]]--;
			if(out[G[tmp][i]]==0)
				q.push(G[tmp][i]);
		}
	}
	for(int i=1;i<n;i++)
		printf("%d ",a[i]);
	printf("%d\n",a[n]);
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d%d",&n,&m);
		int a,b;
		for(int i=1;i<=n;i++)
			out[i]=0,G[i].clear();
		while(m--)
		{
			scanf("%d%d",&a,&b);
			G[b].push_back(a);
			out[a]++;
		}
		toposort();
	}
	return 0;
}
/*
1
5 10
3 5
1 4
2 5
1 2
3 4
1 4
2 3
1 5
3 5
1 2
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值