arcgis影像融合的方法_国产高分卫星遥感影像融合方法比较与评价

本文对比分析了多种遥感影像融合方法,包括Pansharp、Gram-Schmidt、NNDiffuse等,针对国产高分一号卫星数据进行融合实验。结果显示,超分辨率贝叶斯算法(Pansharp)融合效果最佳,Gram-Schmidt、NNDiffuse等地物边界清晰,而Modified IHS、PCA、Brovey融合色彩失真。
摘要由CSDN通过智能技术生成

摘要:选择适宜的融合方法有利于卫星遥感影像融合产品更好的服务于生产实践及科学研究。本文在总结现有影像像素级融合算法原理的基础上,选用Pansharp、Gram-Schmidt、HPF、Ehlers、Subtractive、ModifiedIHS、Brovey、PCA、NNDiffuse等多种常用的影像融合方法对国产高分影像的全色和多光谱数据进行融合处理,并从定性和定量的角度对融合结果进行详细评价,试图寻找适用于国产高分卫星遥感影像的最佳融合方法。结果表明:针对国产高分一号卫星遥感数据,超分辨率贝叶斯算法融合效果在视觉效果与影像质量定量评价指标中综合表现最佳;Gram-Schmidt、NNDiffuse、Subtractive和HPF融合结果地物边界最为清晰;Modified IHS、PCA、Brovey融合影像色彩失真较为明显;NNDiffuse在可见光波段表现较突出;Gram-Schmidt在近红外波段表现效果最佳。

1 引言

遥感影像融合是采用一定的算法将各影像的优点或互补性有机地结合起来并产生新的影像。融合关键在于如何提高融合影像空间分辨率的同时尽量保持原始光谱特性,提高影像信息提取能力[1]。通过影像融合,增强影像的空间分辨率可以提高遥感数据产品的价值。随着应用中对既具有高空间分辨率又具有高光谱分辨率的遥感影像的需求不断增强,遥感影像融合成为遥感图像处理的重要研究方向之一[2-3]。国内外学者对此开展了大量的研究,以期在保持影像光谱分辨率前提下,提高影像的空间分辨率,增强影像信息量。目前广泛应用的高空间分辨率融合方法主要有Pansharp、Gram-Schmidt、HCS、HPF、Ehlers、Subtractive、Modified IHS、Brovey、PCA、NNDiffuse等[10-18]

但是,不同影像融合方法适用于不同数据源,实际应用中针对不同的影像特点和应用目的选择合适的融合方法尤为重要[4]。例如:吴满意等运用不同融合算法对资源三号卫星数据进行试验,并对资源三号影像融合优化方法进行了分析与探讨,结果表明Subtractive、Pansharp及其改进算法较适合资源三号卫星影像的融合[5]。江威等运用Gram-Schmidt、Pansharp、PCA等5种融合算法对高分二号卫星影像进行融合实验并且对融合效果进行了评价,结果表明Pansharp融合方法整体效果最好,Gram-Schmidt和主成分变换次之[6],黄鹤等运用HPF、Modifed IHS、Pansharp 3种融合方法对天绘一号卫星影像进行融合实验,结果表明HPF融合效果最佳[7]

为此,本文通过比较和分析不同的融合算法,选取我国高分一号卫星数据为数据源,采用多种影像融合方法对高分一号2m全色和8m多光谱数据进行实验,并以定性和定量相结合的方式对融合实验结果进行评价。旨在探索适用于高分一号数据的最佳融合方法,为今后高分一号数据的相关应用和研究提供技术参考。

2 实验数据

为了使得比较与评价客观、科学、具有代表性。实验选择了两个光谱特性差异比较大的实验区:一是以建筑物、道路分布为主的城区(图1a);二是以植被分布为主的郊区(图1b)。影像位于新疆阿克苏地区,获取时间为2014年8月25日,产品级别为1A级,原始全色和多光谱影像见图1。在融合前对原始数据进行了进行了几何精校正与配准,纠正误差在0.5个像元以内。

1bb098d4933fba9b457fb49aaaded289.png

图1实验数据选择 (左:多光谱,右:全色  )

3 研究方法

3.1主要融合方法

针对遥感影像像素级融合,国内外学者开展了大量的研究[10-18]。根据算法原理的不同,像素级影像融合可以分为三类[8-9]:(1)基于分量替换的融合方法,基本思想是采用不同的融合规则将全色影像高空间信息融入低分辨率多光谱或用高空间分辨率全色影像替代多光谱变换后的亮度分量,如Gram-Schmidt、HCS、Brovey、主成分变换等。(2)基于多分辨率分解融合方法,基本思想是采用一定的方法将提取的高空间分辨率结构信息注入多光谱影像以提高空间分辨率,如小波变换、金字塔变换、HPF融合等。(3)基于模型方法或算法的融合方法,如Pansharp(超分辨率贝叶斯法)、NNDiffuse融合(最邻近扩散算法)。根据像素级影像融合的算法原理,将目前现有常用的融合算法总结如下表1。

表1常用像素级影像融合方法比较

方法名称

提出者

时间

算法原理

方法特点

超分辨率贝叶斯法(Pansharp)

Zhang Yun[10]

2002年

基于最小二乘法原理计算多光谱影像和全色影像之间的灰度值关系,利用最小方差技术对融合波段的灰度值进行最佳匹配,并调整单个波段的灰度分布以减少融合影像的颜色偏差。

光谱信息和细节特征保持良好;但是要求全色和多光谱影像尽可能同时获取。

Gram-Schmidt(G-S)

Laben and Brower

[11]

1998年

首先使用多光谱影像对全色影像模拟,然后是对模拟全色和多光谱影像进行多维线性正交变换,在利用高空间分辨率全色替换正交变化的第一分量(GS-1),最后GS 逆变换。 

融合波段数量没有限制,影像的光谱信息保持良好,但耗时略长。

HPF

Schowengerdt[12]

1980年

首先用高通滤波器算子提取出高分图像(全色)的细节信息,然后将细节信息叠加

  • 5
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值